

City of Industry

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY

December 2025 | Initial Study / Mitigated Negative Declaration

December 2025 | Initial Study / Mitigated Negative Declaration

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY

City of Industry

Prepared for:

City of Industry

Contact: Eduardo Manriquez, Contract Senior Planner
Mike Poland, Contract Senior Project Manager
15625 Mayor Dave Way
Industry, California 91744
626.333.2211

Prepared by:

PlaceWorks

Jorge Estrada, Senior Associate II
3 MacArthur Place, Suite 1100
Santa Ana, California 92707
714.966.9220
www.placeworks.com

TABLE OF CONTENTS

TABLE OF CONTENTS

Environmental Checklist	1
Project Information	1
Environmental Factors Potentially Affected.....	2
Determination.....	3
1. Introduction.....	5
1.1 Overview	5
1.2 California Environmental Quality Act.....	6
1.3 Initial Study	7
1.4 Mitigated Negative Declaration	7
1.5 Levels of Significance	8
2. Project Description.....	9
2.1 Project Location	9
2.2 Environmental Setting.....	9
2.3 Project Characteristics	17
Transmission.....	34
Substation	39
Communications	39
2.4 Required Permits and Approvals.....	44
3. Environmental Evaluation.....	47
I. Aesthetics	47
II. Agriculture and Forestry Resources.....	53
III. Air Quality	56
IV. Biological Resources.....	65
V. Cultural Resources.....	69
VI. Energy	73
VII. Geology and Soils.....	77
VIII. Greenhouse Gas Emissions.....	86
IX. Hazards and Hazardous Materials	89
X. Hydrology and Water Quality.....	125
XI. Land Use and Planning.....	140
XII. Mineral Resources.....	142
XIII. Noise	143
XIV. Population and Housing.....	158
XV. Public Services.....	159
XVI. Recreation.....	163

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

TABLE OF CONTENTS

XVII. Transportation	164
XVIII. Tribal Cultural Resources	170
XIX. Utilities and Service Systems	174
XX. Wildfire	179
XXI. Mandatory Findings of Significance	182
4. References	185
5. List of Preparers	189
Lead Agency	189
PlaceWorks.....	189

Appendices

Appendix A	Air Quality and Greenhouse Gas Emissions Report
Appendix B	Construction Health Risk Assessment
Appendix C	Biological Resources Assessment
Appendix D	Geotechnical Engineering Report, Terracon, December 2023
Appendix E	Revised Geotechnical Engineering Report
Appendix F	Phase I ESA – 16207 and 16209 Gale Avenue
Appendix G	Phase I ESA – 16233 and 16235 Gale Avenue
Appendix H	Phase I ESA – 16253 and 16293 Gale Avenue
Appendix I	Limited Site Investigation – 16207 and 16209 Gale Avenue
Appendix J	Limited Site Investigation – 16233 and 16235 Gale Avenue
Appendix K	Revised Soil and Groundwater Management Plan
Appendix L	Hazardous Materials and Safety Memorandum
Appendix M	Plume Study
Appendix N	EMF Study
Appendix O	Emergency Air Toxics Analysis
Appendix P	Hydrology Study and Stormwater Quality Management Plan
Appendix Q	Sound Impact Assessment
Appendix R	Transportation Study

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

TABLE OF CONTENTS

List of Figures

Figure		Page
Figure 1	Regional Location.....	11
Figure 2	Local Vicinity	13
Figure 3	Aerial Photograph.....	15
Figure 4a	Proposed Site Layout	19
Figure 4b	Proposed Site Layout	21
Figure 5	Electrical System Details	25
Figure 6	Substation Elevations.....	29
Figure 7	Tie-Line Pole Details.....	31
Figure 8	Landscaping Plan.....	35
Figure 9	Building Elevations and Colors.....	37
Figure 10	Proposed Drainage Area Maps	133
Figure 11	Noise Measurement Locations	149
Figure 12	Noise Generating Project Features.....	155

List of Tables

Table		Page
Table 1	Maximum Daily Regional Construction Emissions.....	59
Table 2	Localized Construction Emissions	61
Table 3	Construction Risk Summary.....	62
Table 4	Chemical Thresholds During Battery Failure	107
Table 5	Toxicity Level for CO	110
Table 6	Emergency Air Toxics Analysis Results – Maximum Exposed Individual Resident	114
Table 7	Phase I ESAs and LSIs Governmental Databases Summary	117
Table 8	Water Quality Protection Construction Best Management Practices.....	128
Table 9	50-year Storm Peak Flow Summary.....	138
Table 10	Los Angeles County Noise Control Ordinance Standards.....	145
Table 11	Vibration Damage Criteria	146
Table 12	Closest Noise-Sensitive Receptors.....	147

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

TABLE OF CONTENTS

Table 13	Project Construction Noise Level Increases.....	151
Table 14	Construction Noise Levels by Construction Activity	151
Table 15	Noise Source Inputs	153
Table 16	Operational Noise Levels at Receptor Locations.....	154

.

ENVIRONMENTAL CHECKLIST

PROJECT INFORMATION

Project Title: Marici Battery Energy Storage System Facility

Lead Agency Name and Address:

City of Industry
15625 Mayor Dave Way
Industry, California 91744

Contact Person and Phone Number:

Eduardo Manriquez, Contract Senior Planner
Mike Poland, Contract Senior Project Manager
626.333.2211

Project Location: The project site has addresses of 16233, 16207, and 16253 Gale Avenue, located on the north side of Gale Avenue immediately north of its intersection with Hinnen Avenue. It is comprised of Assessor's Parcel Numbers 8242-016-033, -034, -036, -044, and -061.

Project Sponsor's Name and Address:

Marici Project LLC
11801 Domain Boulevard, Suite 450
Austin, TX 78758

General Plan Designation: Employment

Zoning: Industrial

Description of Project: The proposed project includes redevelopment of the 9.2-acre project site and minor improvements to SCE Walnut Substation that abuts the project site. The proposed project includes the construction and operation of an approximately 400-megawatt battery energy storage system (BESS) facility and associated site and infrastructure improvements on the project site. Development of the BESS facility requires demolition of all existing buildings, structures, hardscapes, and minimal landscaping on-site. The minor improvements to the SCE Walnut Substation will help interconnect and transfer power between the proposed BESS facility and SCE Walnut Substation. At the end of the proposed project's operational term, which is

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

ENVIRONMENTAL CHECKLIST

anticipated to be 35 years, the project applicant may determine that the BESS facility could be decommissioned and deconstructed, or it may seek an extension of its use permit.

Surrounding Land Uses and Setting: The project site is bound by Gale Avenue and residential uses to the south, Ward Way and warehouses and commercial properties to the west, Union Pacific Railroad/Metro rail lines and a rail yard to the north, and the Southern California Edison Walnut Substation to the east.

Other Public Agencies Whose Approval Is Required (e.g., Permits, Financing Approval, or Participating Agreement):

Los Angeles County Fire Department
Southern California Edison

Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code Section 21080.3.1? If so, is there a plan for consultation that includes, for example, the determination of significance of impacts to tribal cultural resources, procedures regarding confidentiality, etc.?

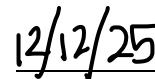
The City of Industry prepared letters addressed to each Native American Tribe provided on the City's list of tribes to be contacted for tribal consultation. Outreach letters were sent to tribal representatives initiating consultation with tribes pursuant to Assembly Bill (AB) 52.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact," as indicated by the checklist on the following pages.

<input type="checkbox"/> Aesthetics	<input type="checkbox"/> Agriculture / Forestry Resources	<input type="checkbox"/> Air Quality
<input type="checkbox"/> Biological Resources	<input type="checkbox"/> Cultural Resources	<input type="checkbox"/> Energy
<input type="checkbox"/> Geology / Soils	<input type="checkbox"/> Greenhouse Gas Emissions	<input type="checkbox"/> Hazards and Hazardous Materials
<input type="checkbox"/> Hydrology / Water Quality	<input type="checkbox"/> Land Use / Planning	<input type="checkbox"/> Mineral Resources
<input type="checkbox"/> Noise	<input type="checkbox"/> Population / Housing	<input type="checkbox"/> Public Services
<input type="checkbox"/> Recreation	<input type="checkbox"/> Transportation	<input type="checkbox"/> Tribal Cultural Resources
<input type="checkbox"/> Utilities / Service Systems	<input type="checkbox"/> Wildfire	<input type="checkbox"/> Mandatory Findings of Significance

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY
ENVIRONMENTAL CHECKLIST


DETERMINATION

On the basis of this initial evaluation:

- I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.
- I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.
- I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.
- I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
- I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Signature

Date

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

ENVIRONMENTAL CHECKLIST

This page is intentionally left blank.

1. INTRODUCTION

1.1 OVERVIEW

The proposed project includes redevelopment of the 9.2-acre site and minor improvements to SCE Walnut Substation that abuts the project site. The proposed project includes the construction and operation of an approximately 400-megawatt battery energy storage system (BESS) facility and associated site and infrastructure improvements. Development of the BESS facility requires demolition of all existing buildings, structures, hardscapes, and minimal landscaping on-site. The minor improvements to the SCE Walnut Substation will help interconnect and transfer power between the proposed BESS facility and SCE Walnut Substation.

The proposed project is an electric energy storage facility that will utilize lithium-ion batteries and ancillary equipment to store energy received from the regional electric grid to then be returned to the grid when needed. Battery energy storage is a key component of federal, state and local planning to strengthen electric grid reliability, and reduce the emission of greenhouse gasses. The proposed project will help to accomplish these goals by providing capacity to store energy when there is excess generation capacity such as from intermittent renewable sources like wind and sunlight, and then allowing that energy to be used when needed thereby reducing dependence on fossil fuel generation sources.

Project battery modules will be housed in purpose-built enclosures. Inverters and transformers will convert between low-voltage direct current (DC) conveyed in and out of the batteries and the regional electric grid's high-voltage alternating current (AC). The rapid response batteries can be utilized to stabilize rapid changes in electric power demand, which reinforces grid stability. The proposed project will include an onsite substation and an overhead 220 kV electric line across the eastern site boundary into the adjacent Southern California Edison (SCE) Walnut Substation. Additional ancillary features include auxiliary equipment pads with transformers and control equipment, paved access and fire lane, fire hydrant system, stormwater drainage controls, a 10-foot-high perimeter wall designed to City and fire department requirements, landscaping, and a storage building and containers for spare parts and equipment.

Development of the BESS facility requires demolition of all existing buildings, structures, hardscapes, and minimal landscaping on-site. Also, SCE identified a need for various modifications and improvements to the Walnut Substation to accommodate and support the proposed project's interconnection. Project development requires City adoption of a Mitigated Negative Declaration and Mitigation Monitoring and Reporting Program, approval of a Zone Code text amendment (Zone Amendment No. 24-07) to allow the use with a CUP, approval of a Conditional Use Permit

1. INTRODUCTION

(CUP No. 24-03), approval of Development Plan Application – Long Form Development Plan No. 24-09 (DP-24-09), approval of a Community Benefit Agreement (CBA No. 25-01), and approval of a ROW Agreement (street improvement permit) and Easement Agreement (encroachment permit).

In compliance with the California Environmental Quality Act (CEQA), the City of Industry (City), as lead agency, is preparing the environmental documentation for the proposed project to determine whether approval of the requested discretionary actions and subsequent development would have a significant impact on the environment. As defined by Section 15063 of the CEQA Guidelines, an Initial Study is prepared primarily to provide the lead agency with the information to use as the basis for determining whether an environmental impact report (EIR), negative declaration, or mitigated negative declaration (MND) would provide the necessary environmental documentation and clearance for the proposed project.

1.2 CALIFORNIA ENVIRONMENTAL QUALITY ACT

The environmental compliance process is governed by the California Environmental Quality Act (CEQA) and the CEQA Guidelines (Public Resources Code [PRC], Section 21000 *et seq.*; California Code of Regulations [CCR], Title 14, Sections 15000 *et seq.*). CEQA was enacted in 1970 by the California Legislature to disclose to decision-makers and the public the significant environmental effects of projects and to identify ways to avoid or reduce the environmental effects through feasible alternatives or mitigation measures. Compliance with CEQA applies to California government agencies at all levels: local, regional, and State agencies, boards, commissions, and special districts (such as school districts and water districts). The City of Industry (“City”) is the lead agency for the proposed project and is therefore required to conduct an environmental review to analyze the potential environmental effects associated with the proposed project.

PRC Section 21080(a) states that analysis of a project’s environmental impact is required for any “discretionary projects proposed to be carried out or approved by public agencies...”. In this case, the City has determined that an Initial Study is required to determine whether there is substantial evidence that construction and operation of the proposed project would result in environmental impacts.

A “project” means the whole of an action that has a potential for resulting in either a direct physical change in the environment, or a reasonably foreseeable indirect physical change in the environment, and that is any of the following:

- An activity directly undertaken by any public agency including but not limited to public works construction and related activities clearing or grading of land, improvements to existing public structures, enactment and amendment of zoning ordinances, and the adoption and

1. INTRODUCTION

amendment of local General Plans or elements thereof pursuant to Government Code sections 65100 to 65700.

- An activity undertaken by a person which is supported in whole or in part through public agency contacts, grants, subsidies, loans, or other forms of assistance from one or more public agencies.
- An activity involving the issuance to a person of a lease, permit, license, certificate, or other entitlement for use by one or more public agencies. (14 CCR Section 15378[a]).

The proposed discretionary actions by the project applicant constitute a “project” because the activity has the potential to result in a direct physical change in the environment and requires issuance of discretionary land use entitlements by the City. All “projects” in the State of California are required to undergo an environmental review to determine the environmental impacts associated with implementation of the project.

1.3 INITIAL STUDY

The purpose of the Initial Study is to: 1) provide the lead agency with information to use as the basis for deciding the proper type of CEQA document to prepare; 2) enable the lead agency to modify a project, mitigating adverse impacts before an Environmental Impact Report (EIR) is prepared, thereby enabling the project to qualify for a negative declaration; 3) assist in the preparation of an EIR, if one is required; 4) facilitate environmental assessment early in the design of a project; 5) provide documentation of the factual basis for the findings in a Mitigated Negative Declaration (MND) or Negative Declaration (ND); 6) eliminate unnecessary EIRs; and 7) determine if a project is covered under a previously prepared EIR. When an Initial Study identifies the potential for immitigable significant environmental impacts, the lead agency must prepare an EIR (14 CCR section 15064); however, if all impacts are found to be less than significant or can be mitigated to a less-than-significant level, the lead agency can prepare an ND, or MND that incorporates mitigation measures into the project (14 CCR section 15070).

1.4 MITIGATED NEGATIVE DECLARATION

The MND includes information necessary for agencies to meet statutory responsibilities related to the proposed project. State and local agencies will use the MND when considering any permit or other approvals necessary to implement the project. A list of the environmental topics that have been identified for study in the MND is provided in the Environmental Checklist.

One of the primary objectives of CEQA is to enhance public participation in the planning process; public involvement is an essential feature of CEQA. Community members are encouraged to participate in the environmental review process, request to be notified, monitor newspapers for

1. INTRODUCTION

formal announcements, and submit substantive comments at every possible opportunity afforded by the lead agency. The environmental review process provides several opportunities for the public to participate through public notice and public review of CEQA documents and at public meetings.

1.5 LEVELS OF SIGNIFICANCE

The following terminology is used to describe the level of significance of impacts. Although the criteria for determining significance are different for each topic area, the environmental analysis applies a uniform classification of the impacts based on definitions consistent with CEQA and the CEQA Guidelines:

- **No impact.** The project would result in no adverse effect on the environment.
- **Less than significant.** The project would not exceed the established significance criteria.
- **Less than significant with mitigation incorporated.** The project would exceed the established significance criteria without mitigation measures, but one or more mitigation measures would reduce the impact to a less-than-significant level successfully.
- **Potentially significant.** The project would exceed the established significance criteria, and either no feasible mitigation measures are available to reduce the impact to a less-than-significant level, or more analysis is needed to determine if feasible mitigation measures are available to reduce the impact to a less-than-significant level. If any impact is identified as potentially significant, an EIR is required.

Mitigation Measures. If, after incorporation and implementation of federal, state, and local regulations, there are still significant environmental impacts, then feasible and project-specific mitigation measures are required to reduce impacts to less-than-significant levels. Mitigation measures must further reduce significant environmental impacts above and beyond compliance with federal, State, and local laws and regulations. Mitigation under CEQA Guidelines Section 15370 includes:

- Avoiding the impact altogether by not taking a certain action or parts of an action.
- Minimizing impacts by limiting the degree or magnitude of the action and its implementation.
- Rectifying the impact by repairing, rehabilitating, or restoring the impacted environment.
- Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action.
- Compensating for the impact by replacing or providing substitute resources or environments.

2. PROJECT DESCRIPTION

2.1 PROJECT LOCATION

2.1.1 Regional Setting

The 9.2-acre project site (Project Site) is at the western end of the City of Industry, in the southeastern part of Los Angeles County. Industry is bordered by the cities of Diamond Bar, Walnut, Pomona, West Covina, La Puente, Baldwin Park, and El Monte and the unincorporated Los Angeles County communities of Rowland Heights and Hacienda Heights (see Figure 1, *Regional Location*). The Project Site lies in a lowland area in the eastern San Gabriel Valley with Puente Hills to the south. Regional access to the Project Site is from State Route 60 via the Gale Avenue and Hacienda Boulevard freeway ramp approximately 0.75 miles to the southwest.

2.1.2 Local Setting

As shown in Figures 2, *Local Vicinity*, and 3, *Aerial Photograph*, the Project Site is bounded by Gale Avenue and residential uses to the south, Ward Way and warehouses and commercial properties to the west, Union Pacific Railroad (UPRR)/Metro rail lines and a rail yard to the north, and the Southern California Edison (SCE) Walnut Substation to the east. The Project Site has addresses of 16233, 16207, and 16253 Gale Avenue and is located on the north side of Gale Avenue north of its intersection with Hinnen Avenue; it consists of five contiguous legal parcels (Assessor's Parcel Numbers 8242-016-033, -034, -036, -044, and -061). Local access to the Project Site is provided via Stimson Avenue and Gale Avenue.

2.2 ENVIRONMENTAL SETTING

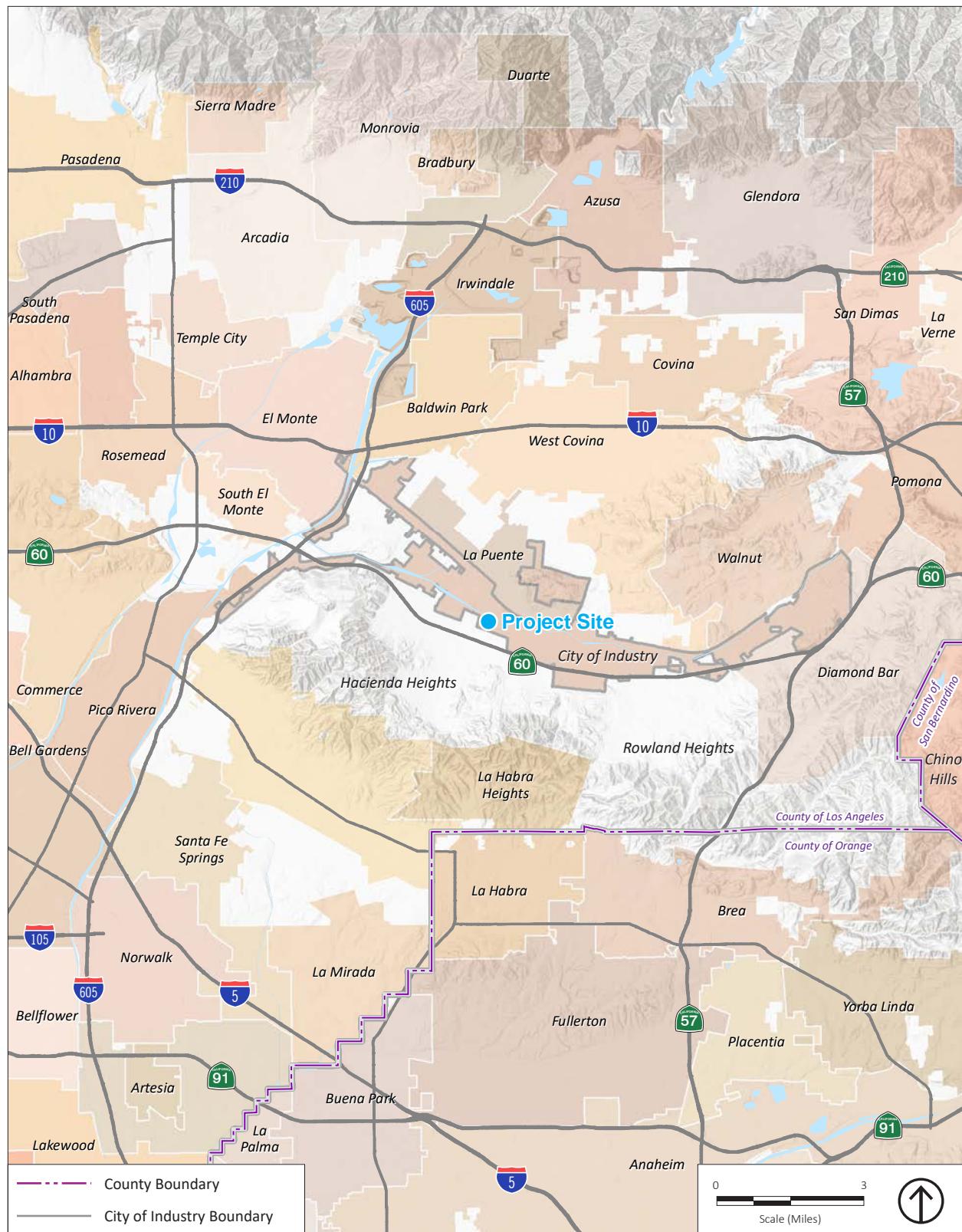
2.2.1 Existing Land Use

The Project Site is currently developed with warehouse, manufacturing, and industrial uses totaling 161,781 square feet of building space, and approximately 205,000 square feet of asphalt and concrete surfacing. Other site features include surface parking areas; outdoor storage and loading/unloading areas; driveways that connect to the internal parking and circulation improvements; and various hardscape and landscape improvements. The Project Site is currently secured on all sides by a mix of tubular-steel fencing, chain-link fencing, solid block walls, and landscaping. Wooden power poles with electrical lines run along a portion of the western/central

2. PROJECT DESCRIPTION

portions of the Project Site. The Project Site is almost entirely covered by impervious surfaces (pavement, buildings, and loading docks). The total existing impervious cover is 8.43 acres, which makes up approximately 92 percent of the total Project Site. Vehicular access to the Project Site is currently provided via three driveways from Gale Avenue.

An SCE overhead electric distribution line currently passes through the eastern portion of the site in a generally north-south direction. A segment of another SCE overhead distribution line is in the western portion of the site.


2.2.2 Existing Zoning and General Plan

The regulatory plans that govern development and use of the Project Site are the Industry General Plan and Municipal Code (including Title 17, Zoning). The development and design standards and regulations in Title 17 implement the City's General Plan and constitute the zoning regulations that govern development of the Project Site. Per the City's General Plan land use map, the Project Site's land use designation is Employment. Per the City's zoning map, the Project Site is zoned Industrial. Allowed uses under the Employment and Industrial designations include a variety of business and employment uses, including industrial, assembly, printing, machining, milling, welding, research and development, distribution, warehousing, storage, and support office uses. Currently, the proposed battery energy storage system is not listed as a "Permitted Use" in the City's Industrial Zone.

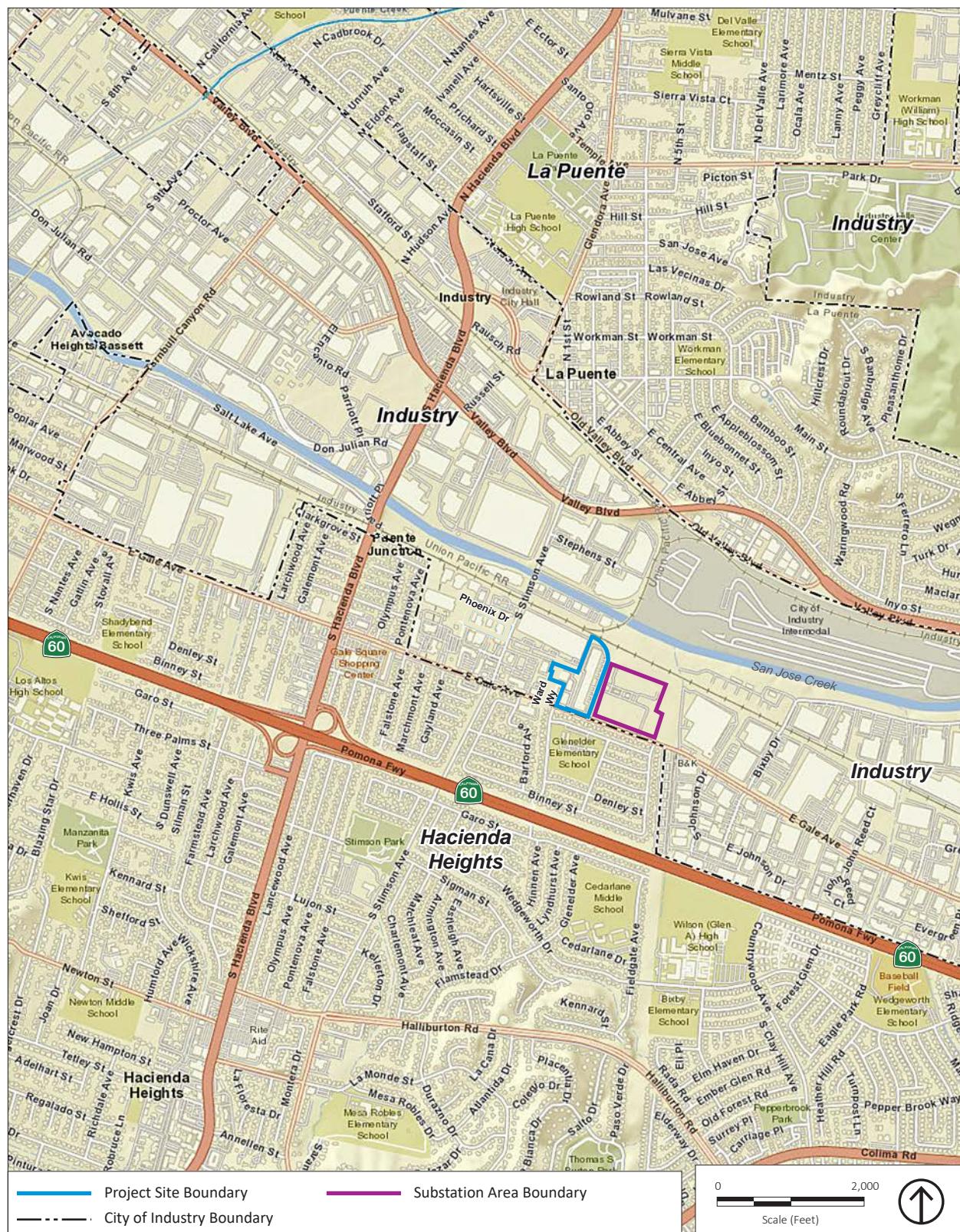
2.2.3 Surrounding Land Use

The Project Site is surrounded by a mix of uses, including industrial and warehouse uses to the north and west, the SCE Walnut Substation to the east, and residential uses to the south beyond Gale Avenue in the unincorporated Los Angeles County community of Hacienda Heights. The Project Site and adjacent properties within the City's boundaries are zoned Industrial (I), with the exception of the SCE Walnut Substation, which is zoned Institutional. The Project Site and surrounding area are urban, disturbed, and developed. The closest sensitive receptors are the residential uses to the south in Hacienda Heights. The closest surface water is the concrete-lined San Jose Creek Channel, about 400 feet north of the Project Site. Figure 3 depicts the surrounding land uses.

MARICI BATTERY ENERGY STORAGE FACILITY
CITY OF INDUSTRY

Source: Generated using ArcMap 2025.

Figure 1
Regional Location


MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

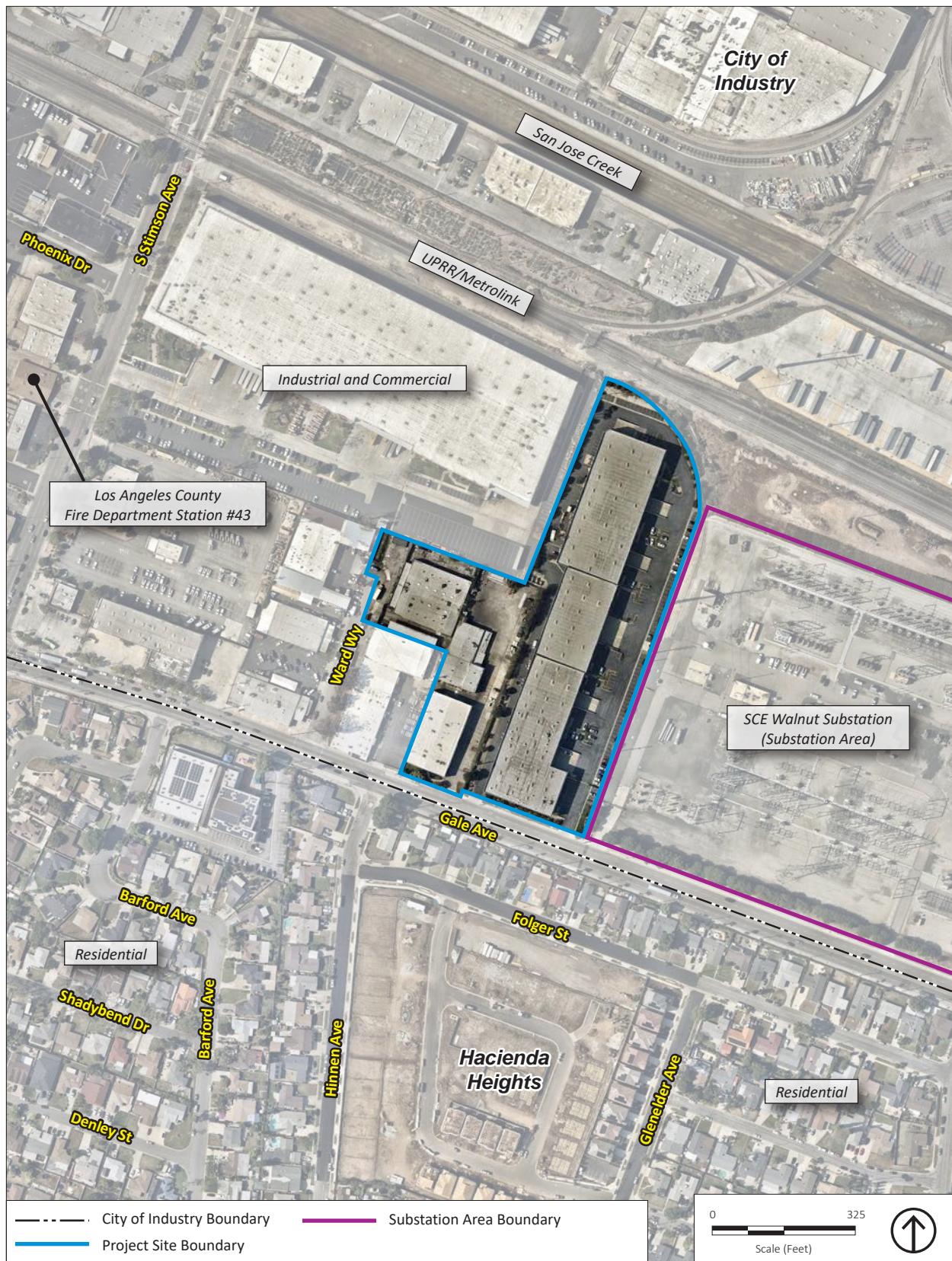
2. PROJECT DESCRIPTION

This page is intentionally left blank.

MARICI BATTERY ENERGY STORAGE FACILITY
CITY OF INDUSTRY

Source: Generated using ArcMap 2025.

Figure 2
Local Vicinity


MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

2. PROJECT DESCRIPTION

This page is intentionally left blank.

MARICI BATTERY ENERGY STORAGE FACILITY
CITY OF INDUSTRY

Source: Nearmap 2025.

Figure 3
Aerial View

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

2. PROJECT DESCRIPTION

This page is intentionally left blank.

2. PROJECT DESCRIPTION

2.3 PROJECT CHARACTERISTICS

2.3.1 Project Overview

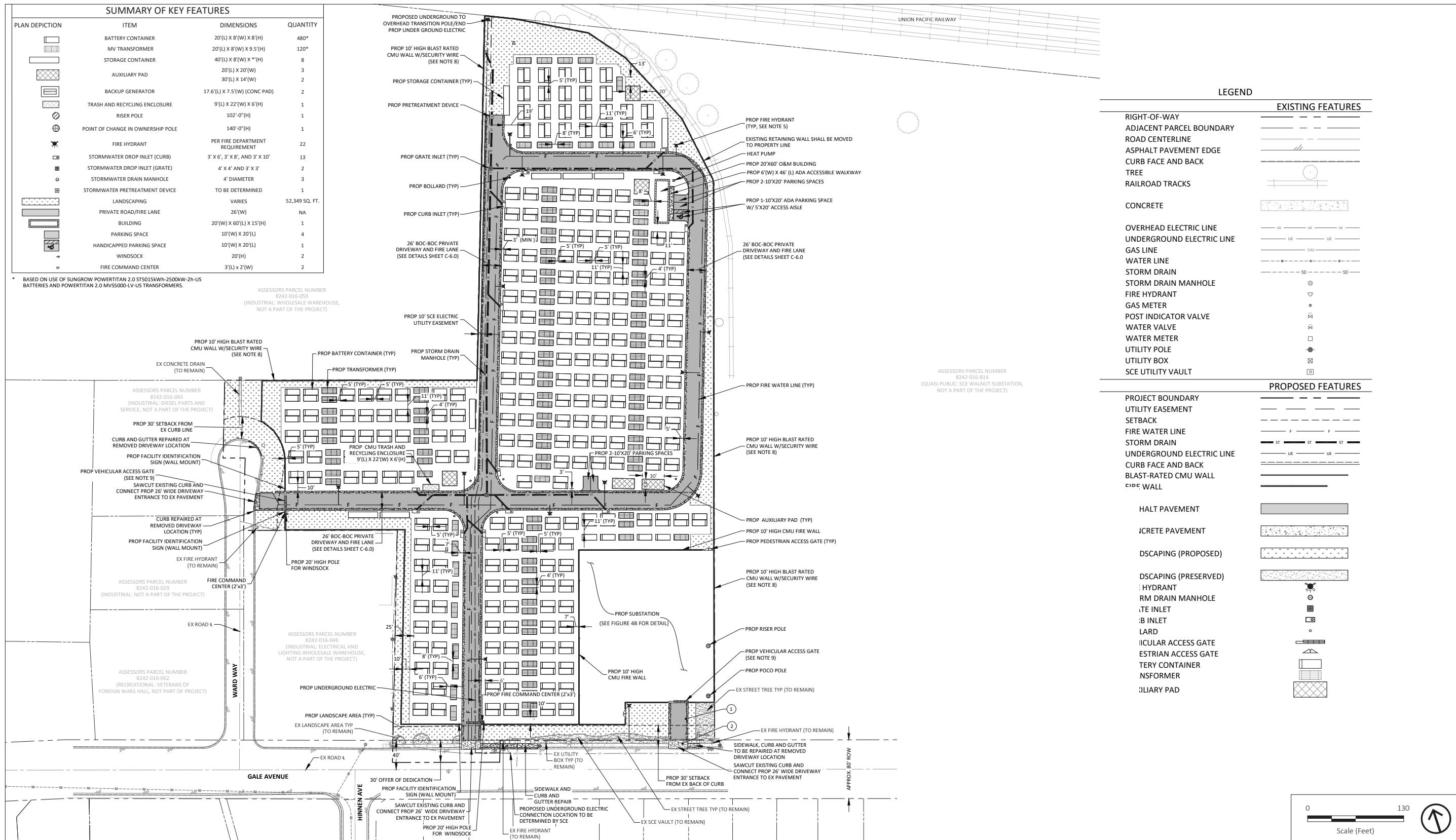
The proposed project would provide the State of California with a reliable battery energy storage system (BESS) that would receive, store, and discharge electricity from the California Independent System Operator (CAISO) controlled electric grid, including renewable energy produced by existing solar and wind resources in the region.

Battery energy storage is a key component of federal, state, and local planning to strengthen electric grid reliability and reduce the emission of greenhouse gases. The proposed project will help to accomplish these goals by providing capacity to store energy when there is excess generation capacity, such as from intermittent renewable sources like wind and sunlight, then allowing that energy to be used when needed, thereby reducing dependence on fossil fuel generation sources. The rapid response batteries can be utilized to stabilize changes in electric power demand, which reinforces grid stability. The need for facilities such as the proposed project is immediate—on July 30, 2021, Governor Newsom declared a State of Emergency in California regarding statewide electricity shortages caused by climate change, drought, and wildfires. The Governor called upon agencies across the State to take actions to expedite approval of BESSs to bring capacity online in 2022 and beyond. Construction and operation of the proposed project will accomplish the following.

- Use a proven and established energy storage technology that is efficient, has low maintenance requirements, and is recyclable.
- Assist California in meeting its greenhouse gas emissions reduction goals by 2020 and 2030 as required by the California Global Warming Solutions Act (Assembly Bill 32) and amended by Senate Bill 32 in 2016.
- Assist California in achieving its transition from fossil-fuel use by allowing renewables to be stored and discharged back to the market when necessary.

2. PROJECT DESCRIPTION

2.3.2 Proposed Land Use and On-Site Improvements


The proposed Marici BESS facility (proposed Project) includes the construction and operation of an approximately 400-megawatt BESS facility and associated site and infrastructure improvements on the Project Site. Project implementation requires demolition of all existing buildings, structures, hardscapes, and landscaping on-site. Figures 4a and b, *Proposed Site Layout*, illustrate the layout of the proposed BESS facility and associated improvements and equipment. As shown in Figure 4a, the southeastern portion of the Project Site would be developed with the on-site collector substation, which is further illustrated in Figure 4b.

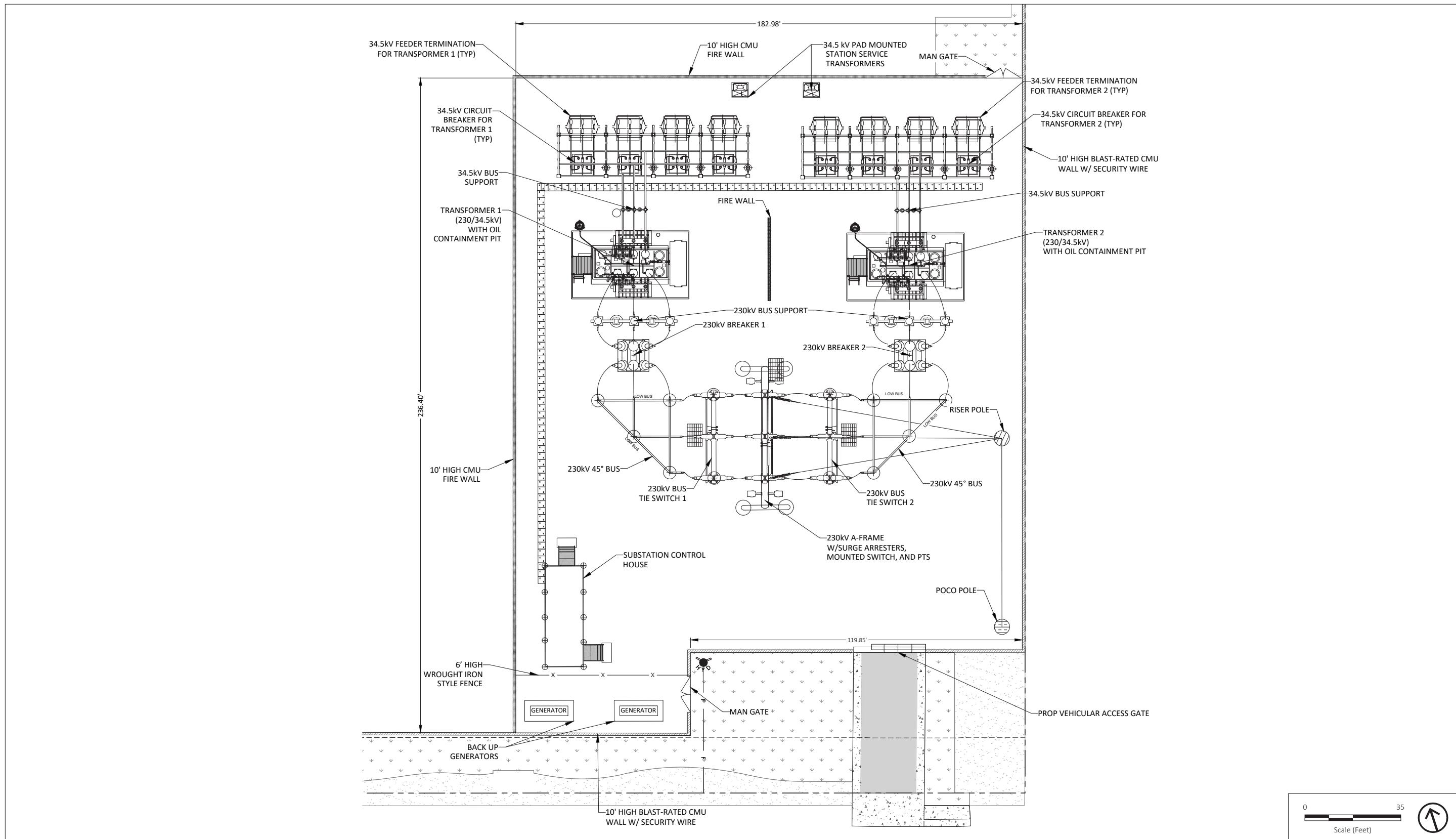
The proposed Project would provide a service to the regional electric grid by receiving energy (charging) from the SCE electric transmission system, storing energy on-site, then delivering energy (discharging) back to the SCE Walnut Substation (Substation Area). The proposed BESS facility would generate a total electricity demand of 584,000 kilowatt-hours per year. Power captured or released by the proposed Project would be transferred to and from the Substation Area, which is at 16398 Gale Avenue in the City of Industry (bordering the site to the east), via an overhead tie-line. Project implementation would require several improvements to the Substation Area, which are described below.

Project approval requires City adoption of a Mitigated Negative Declaration and Mitigation Monitoring and Reporting Program, approval of a Zone Code text amendment (Zone Amendment No. 24-07) to allow the use with a CUP, approval of a Conditional Use Permit (CUP No. 24-03), approval of Development Plan Application – Long Form (Development Plan No. 24-09 (DP-24-09), approval of a Community Benefit Agreement (CBA No. 25-01), approval of a ROW Agreement (street improvement permit), and Easement Agreement (encroachment permit).

The Industrial zoning designation of the Project Site does not permit the development and operation of BESS facilities. Development of the proposed BESS facility on the Project Site does not include or require a change in the zoning designation of the Project Site (e.g., through an amendment to the site's zoning designation from one zone to another); however, a zone text amendment to list BESS facilities as a use permitted through City approval of a CUP in the Industrial zone is required.

Following is a description of the various components and improvements, both on- and off-site, associated with and needed to implement the proposed Project.

Source: TRC 2025.


Figure 4a Proposed Site Layout

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

2. PROJECT DESCRIPTION

This page intentionally left blank.

Source: TRC 2025.

Figure 4b
Proposed Site Layout

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

2. PROJECT DESCRIPTION

This page intentionally left blank.

2. PROJECT DESCRIPTION

2.3.3 Battery Energy Storage System Enclosures

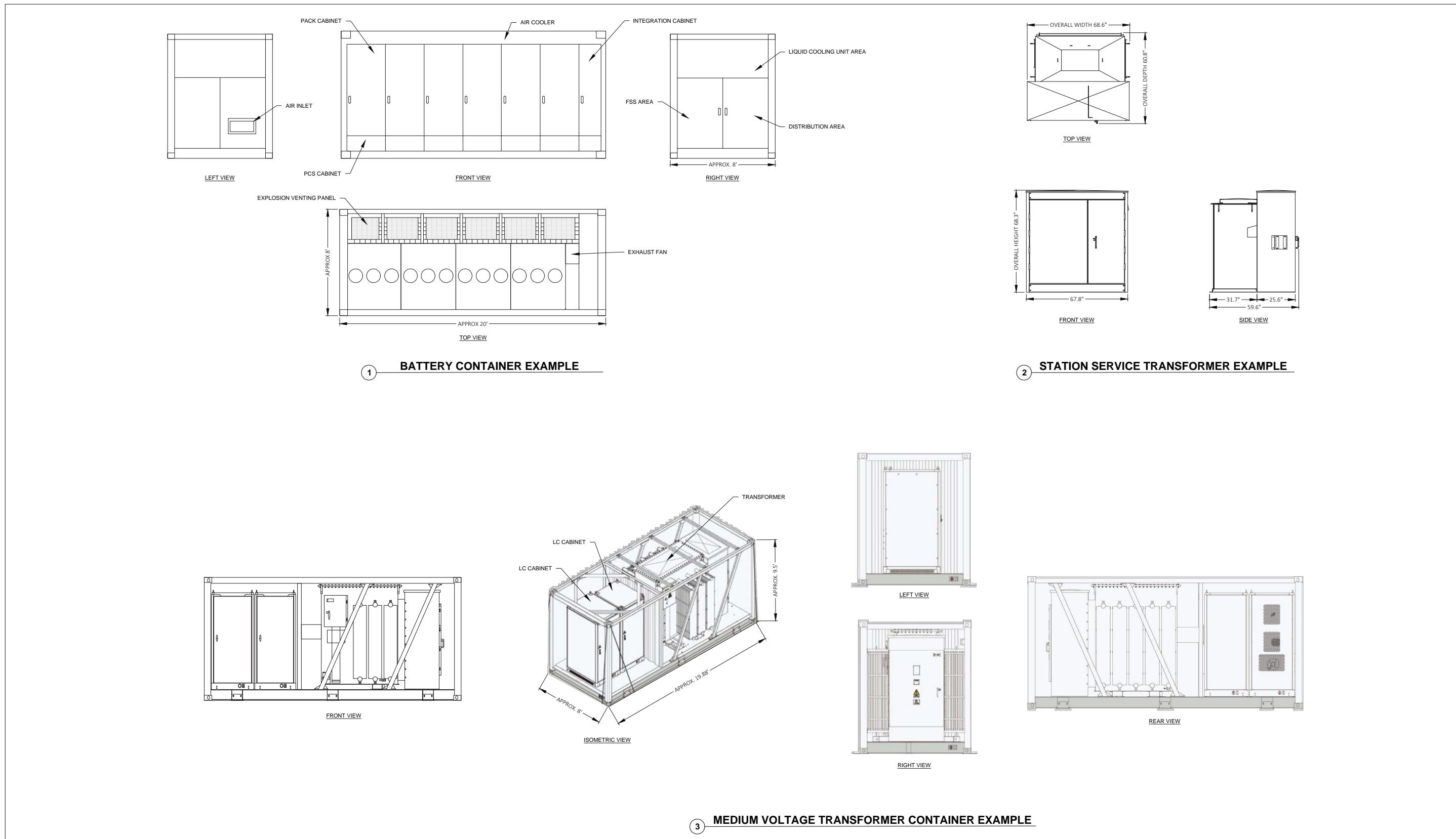
The proposed project includes lithium-ion batteries that would be housed in purpose-built, free-standing enclosures approximately 10 feet or less in height. The purpose-built enclosures would be designed and installed in accordance with all applicable seismic design requirements of the current California Building Code. The enclosures would also be built in accordance with all pertinent regulations outlined in the Los Angeles County Fire Code (Title 32 of the Los Angeles County Code), which is adopted by reference in the Industry Municipal Code, Chapter 15.28, Fire Code, and NFPA 855, which is the National Fire Protection Association standard for the Installation of stationary energy storage systems. The proposed Project includes the use of the Sungrow PowerTitan 2.0 energy storage system with PowerTitan 2.0 ST5015kWh-2500kW-2h-US battery enclosures.

The battery enclosures include inverters to convert the direct current (DC) flowing in and out of the batteries to alternating current (AC) flowing in and out of the battery containers. Figure 5, *Electrical System Details*, shows a battery container example. The power inverters would be industry standard, nationally (and internationally) recognized equipment. The inverters would be stand-alone units that operate in both charge and discharge modes in all conditions. They are monitored and controlled remotely with no need for daily staffing on-site. There would be on-site disconnects in the event of an emergency or unscheduled maintenance. The disconnects would allow maintenance personnel and emergency responders to completely de-energize the BESS and connected circuits, preventing electrical hazards during maintenance, repair, or emergencies.

The proposed Project would include 480 battery containers and 120 medium voltage (MV) transformer containers (see Figure 4a for layout and placement of enclosures). Bi-directional MV transformers housed in separate purpose-built containers would be arranged throughout the battery array areas to transform low-voltage AC current from the battery containers to medium-voltage AC current for collection by medium-voltage conductor cables. Figure 5 shows an example of an MV transformer container. The MV conductor cables would be underground and would connect the MV transformers to an on-site collector substation.

The battery enclosures would contain lithium-ion batteries installed in racks inside the enclosure. Each enclosure contains six racks with eight modules each, for a total of 48 liquid-cooled battery modules. A Power Conversion System (PCS), which manages how electricity flows between the batteries and the electric grid or facility load, is underneath each rack. The PowerTitan 2.0 includes a vent panel, heat and smoke detectors, a sound beacon, ventilation system, and flammable gas detector. The PowerTitan 2.0 enclosures include an NFPA 69 ventilation system to expel battery vent gas in case of cell failure. The exhaust fan activates upon detection of hydrogen gas and expels air and vent gas. This system is designed to prevent an explosive atmosphere. An inlet louver would be located on the left side of the enclosure near the bottom, and an exhaust

2. PROJECT DESCRIPTION


fan would be located on top of the enclosure near the right side. The exhaust fan would activate upon detection of hydrogen gas and expels air and vent gas.

2.3.4 Battery Safety

Equipment manufacturing, construction, and operations would include comprehensive measures to ensure safe equipment installation and operation. Each battery module and battery container would be inspected and tested at the manufacturer's facility. Each container would be inspected for damage at the Project Site prior to installation and testing. Once installed, tested, and in operational mode, each battery module would be continuously monitored from an off-site location for electrical current, voltage, and temperature to optimize performance and mitigate potential failures. Batteries performing out of specification would be immediately taken offline by the automated monitoring system.

Battery enclosures would be spaced following National Fire Protection Association (NFPA) Standard 855, Los Angeles County Fire Department (LACoFD) requirements and manufacturer's specifications to minimize risk of fire spreading to adjacent containers. NFPA 855 would also require comprehensive safety planning submittals to LACoFD, including results of bench-scale fire and explosion testing by the manufacturer and hazard mitigation analysis for the specific type of battery used. An Emergency Response Plan would be reviewed and approved by LACoFD, designed to ensure well-planned, prompt, safe, and appropriate response in the event of an emergency. These submittals would be made to LACoFD after the specific equipment is selected and prior to issuance of building permits. NFPA 855 additionally mandates initial and annual refresher training for facility staff, and the Applicant would coordinate with LACoFD to facilitate site-specific LACoFD staff training.

Each of the BESS enclosures would be equipped with fire prevention, detection, and isolation methods and materials; monitoring systems and controls; and cooling units to keep the batteries at optimal operating temperatures. At a minimum, this would include smoke/fire detection sensors, ground fault detection, alarms, and systems to automatically shut down cooling fans and open electrical contacts in the battery system. In addition, monitoring systems would include heat sensors, gas detectors, and an NFPA 69-compliant explosion prevention system. Each protection system would have a signal that would trigger core power-down during fire, overheating, or other malfunction. The entire project would power down automatically during electrical-fault conditions (e.g., high-voltage, high-frequency, ground fault). In addition, the proposed BESS would be equipped with breakers that could be opened manually to power down different equipment on the Project Site.

Source: TRC 2025.

Figure 5
Electrical System Details

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

2. PROJECT DESCRIPTION

This page intentionally left blank.

2. PROJECT DESCRIPTION

2.3.5 On-Site Collector Substation

A collector substation would also be provided on-site. As shown in Figure 4a, the collector substation would be at the southeast end of the Project Site. Figure 4b illustrates the enlarged collector substation plan and the various components of the substation. The on-site collector substation would include two high-voltage (HV) bi-directional transformers that would convert between the on-site MV systems and the regional electric grid's high-voltage AC. The HV side of the on-site substation would be 220 kilovolts (kV) and would connect to the adjacent SCE Walnut Substation via a new 220 kV overhead tie line that would cross the eastern site boundary directly into the Walnut Substation. The point of change in ownership (POCO) between the proposed Project and SCE facilities would be an approximately 140-foot-high steel pole. In addition, there would be two station transformers in the on-site substation to provide on-site power. Locations and details of these features are provided in Figure 4b. The substation elevations are shown in Figure 6, *Substation Elevations*. The main power transformers, which are the tallest feature of the substation, would reach a maximum height of 38 feet and 4 inches above grade.

Substation equipment would include 230 kV and 34.5 kV bus work, circuit breakers, disconnect switches, instrument transformers, metering transformers, two 220/34.5 kV bi-directional transformers, two auxiliary transformers for station service, two back-up generators, a control house with relay protection, a supervisory control and data acquisition (SCADA) system, and a telemetry system.

All outside electrical equipment would be housed in the appropriate National Electrical Manufacturers Association-rated enclosures to withstand outdoor conditions and would be screened from view to the extent feasible on all sides. With the exception of the tie line between the on-site collector substation and the SCE Walnut Substation, all outside electrical cabling on-site would be placed underground.

2.3.6 Telecommunication Facilities

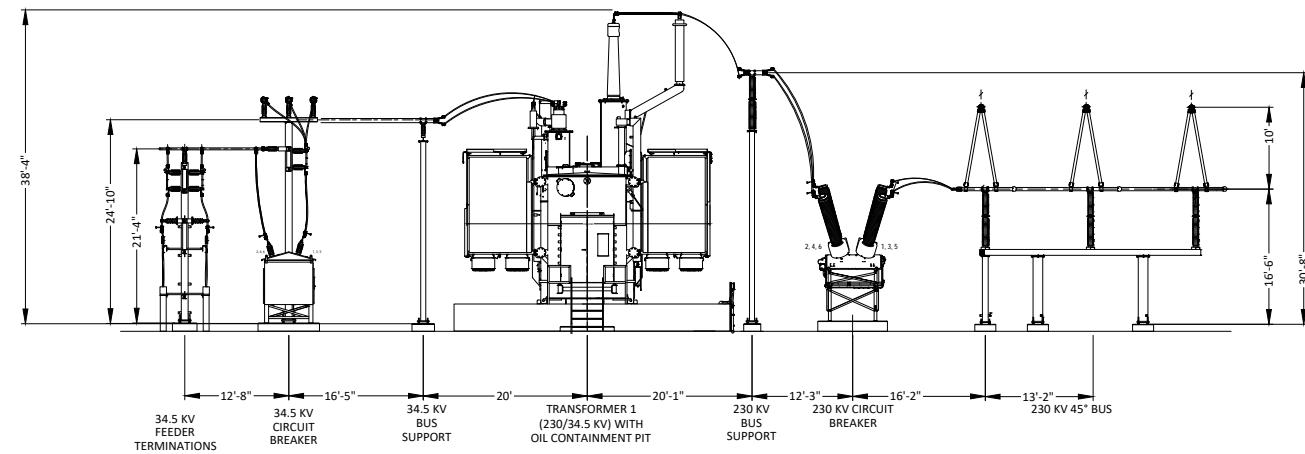
The proposed Project would include telecommunication facilities to meet the communication requirements for interconnecting and communicating with the SCE/CAISO facilities and to support remote operations monitoring. To provide communication with SCE facilities, a fiber-optic line would be used to connect the proposed Project's collector substation with the SCE substation. Utility interconnection regulations require the installation of a second, separate and redundant, diverse telecom option. Accordingly, the proposed Project would include a diverse fiber route as well as a backup cellular modem to ensure redundancy and reliability.

Project development also includes the provision of a SCADA system. The SCADA system is critical to the CAISO and SCE utility interconnection and for the proper operation and maintenance of the proposed Project. The SCADA system would aggregate all project information from the BESS,

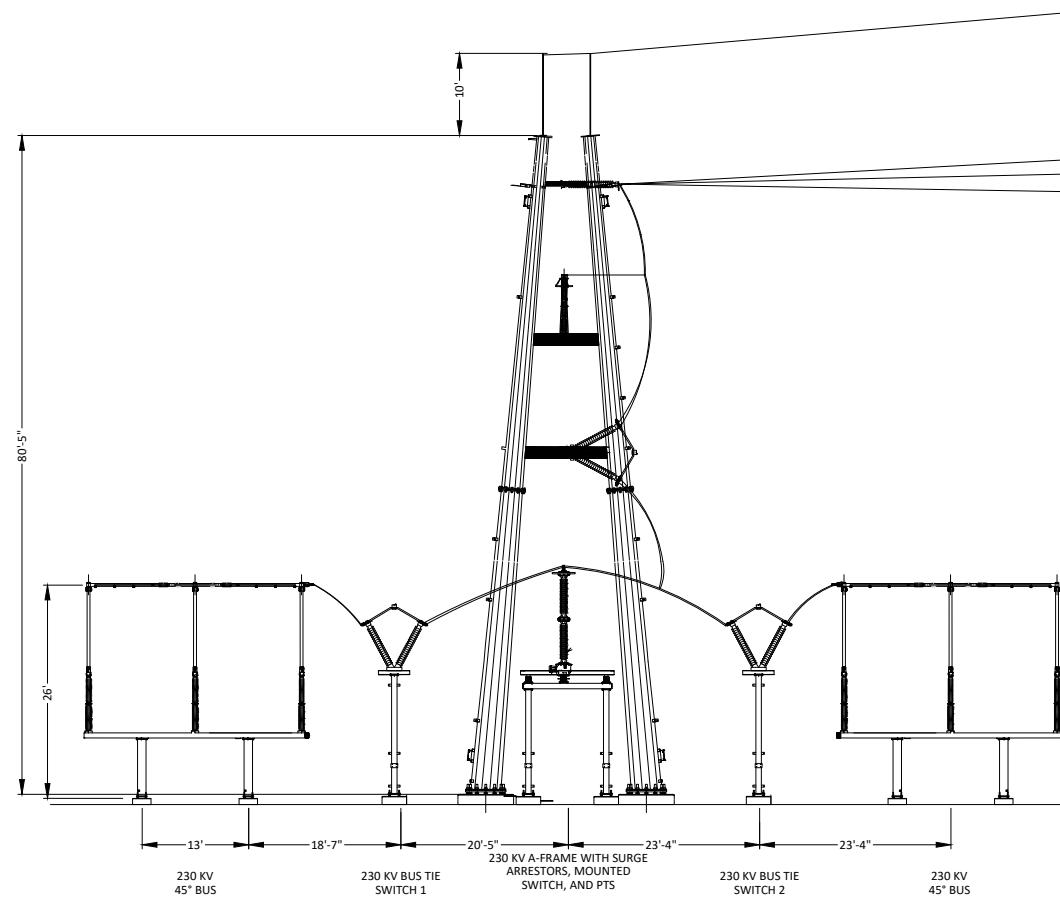
2. PROJECT DESCRIPTION

inverters, transformers, breakers, Fire Alarm Control Panel, and transmission lines. The SCADA system would also communicate with the transmission service provider, grid operator, and the proposed Project's remote operations center. The SCADA system can also control critical site functions, including charge/discharge, breaker status, and total output.

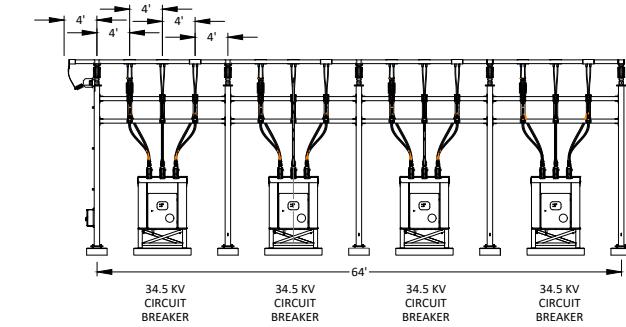
2.3.7 Tie Line

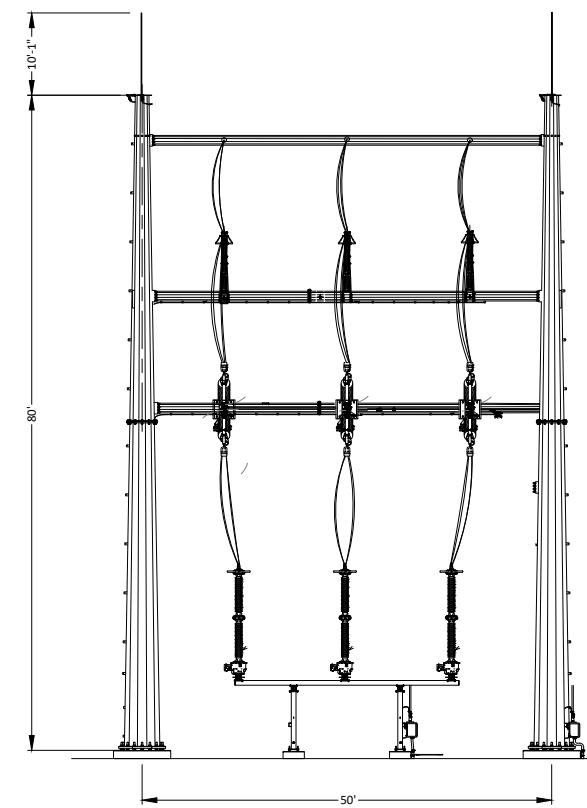

The high voltage (east) side of the on-site substation would include an A-frame dead-end structure, a riser pole, and a POCO pole that would be extended to connect the 220 kV overhead lines to the POCO and into the adjacent SCE Substation. The design includes an A-frame, riser pole, and POCO pole with heights of 80.5 feet, 102 feet, and 140 feet, respectively (see Figure 7, *Tie-Line Pole Details*). The heights would be designed to allow the 220 kV line to cross into the SCE Substation above an existing 66 kV line with required clearances for safety. The dead end, poles, and other collector substation structural steel would have a galvanized or other neutral-colored, low-reflective finish.

2.3.8 Site Access, Parking, and Security


The proposed Project would include interior paved access and fire lanes, five parking spaces, and a solid perimeter wall topped with security wire designed to City and LACoFD requirements from Title 32 of Los Angeles County's Code of Ordinances.

As shown in Figure 4a, access to the Project Site would be provided from two driveways on Gale Avenue and one driveway on Ward Way. The driveways would provide access to the 26-foot internal drive aisle. The drive aisle would meet LACoFD requirements and be designed for two-way circulation. The Project Site would be secured from public entry so only project vehicles would be on-site. Five parking spaces would be provided to accommodate on-site employees and maintenance vehicles. Three of these parking spaces would be adjacent to the office building, and two would be in the central part of the Project Site.


The entire BESS facility would be enclosed by a 10-foot-high solid perimeter wall with security wire whose function would include safety, security, and aesthetics (see Figure 4a). The wall would be set back 30 feet from existing curb lines with landscaping outside the wall. The wall would be constructed of reinforced concrete block designed to withstand a potential explosion and prevent the passage of related projectiles, as required by the LACoFD and Chapter 8-4 of the Los Angeles County's 2023 Building Code. The wall would also be designed to withstand a potential fire and pressure wave according to LACoFD requirements.

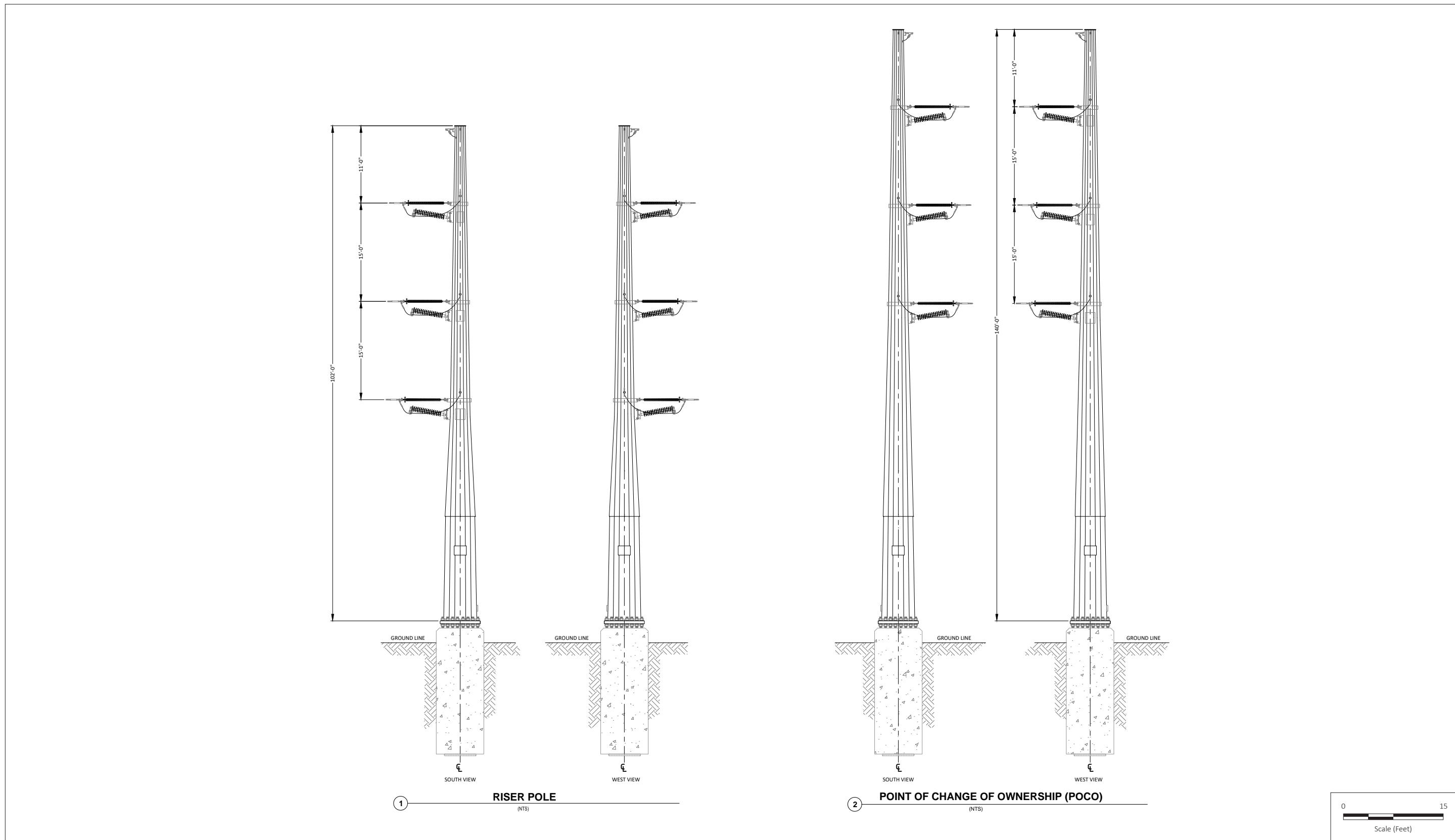

BREAKERS, TRANSFORMERS AND BUSWORK - WEST VIEW

A-FRAME AND BUSWORK - SOUTH VIEW

**TYPICAL 34.5 KV FEEDER TERMINATION AND CIRCUIT BREAKER BAY - SOUTH VIEW
(DIMENSIONS ARE TYPICAL)**

A-FRAME - EAST VIEW

Source: TRC 2025.


Figure 6
Substation Elevations

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

2. PROJECT DESCRIPTION

This page intentionally left blank.

Source: TRC 2025.

Figure 7
Tie-Line Pole Details

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

2. PROJECT DESCRIPTION

This page intentionally left blank.

2. PROJECT DESCRIPTION

Existing street trees and landscaping adjacent to the sidewalk within the right-of-way on the Gale Avenue frontage would be preserved. Existing landscaping farther away from the street and sidewalk would need to be removed for perimeter wall construction, and new perimeter landscaping would be planted. Features that would be visible above the wall include the higher items in the collector substation (see Figure 6) and the overhead electric line that would cross directly into the SCE Walnut Substation. The proposed on-site substation would be secured from unauthorized entry, with signage in accordance with code requirements for high-voltage electricity. Limiting access to the Project Site would be necessary both to ensure the safety of the public and to protect the equipment from potential theft and vandalism.

The Project Site would be closed to public access with gates that would be maintained and secure. Internal on-site roads, access gates, and fire hydrants would be designed in accordance with LACoFD requirements. A Knox rapid access system would be provided at gates for fire department access. Roads would be designed for two-way circulation of on-site traffic, which would be minimal, consisting of visits by employees, contractors, and vendors providing periodic maintenance and monitoring visits. Project infrastructure would include two diesel-fired generators to provide backup power for critical functions. Aside from the backup generators, the project does not have any emission sources that require an emissions permit from the South Coast Air Quality Management District. Shielded, downward-directed night-lighting would be provided for safety and security.

2.3.9 Stormwater Drainage Controls and Landscaping

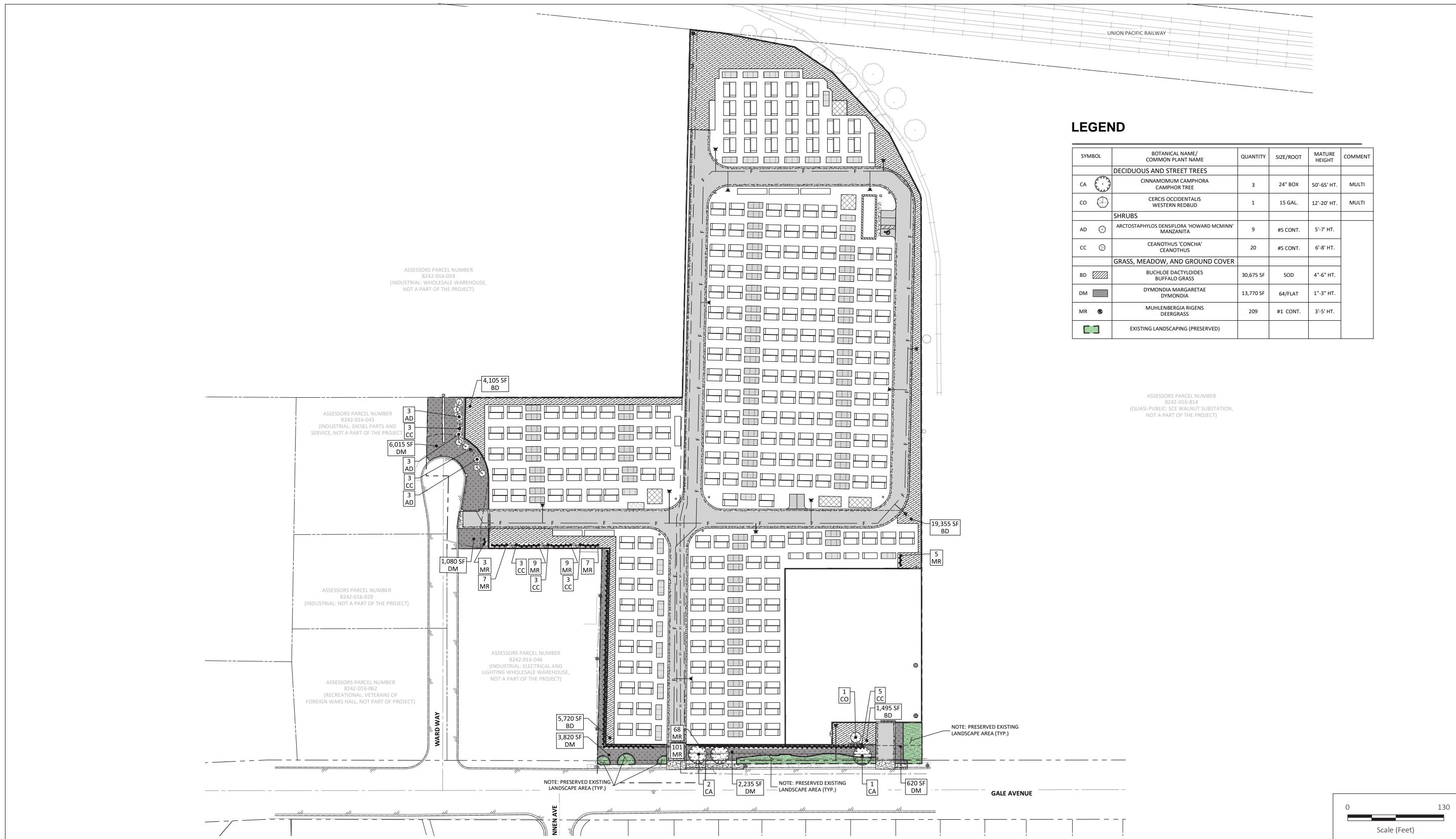
The final finished grade throughout the Project Site will consist of stable surfaces, including asphalt roads and parking spaces, concrete footings and slabs, landscaped areas, and gravel or asphalt in equipment areas not covered by footings or slabs. Under existing conditions, stormwater flows to a public stormwater drain in Gale Avenue that connects to a storm drain in South Stimson Avenue. This storm drain outfalls into the San Joe Creek channel. The proposed surface grading, drop inlets, and underground piping would convey stormwater to the same locations it currently flows, and peak stormwater runoff volumes would be reduced compared to existing conditions because the area of impermeable surfaces would be less (88 percent vs. 92 percent). Biofiltration systems will be included in the drainage design to remove pollutants before stormwater is discharged.

The project is designed with landscaping that exceeds the City's 12 percent minimum requirement and is more than three feet wide at the Gale Avenue frontage and areas whose views are not obstructed from public vantage points (see Figure 8, *Landscaping Plan*). The project's landscaping would comply with the City's water efficient landscape regulations and guidelines. Pursuant to City Municipal Code Section 13.18.060, documentation of compliance needs to be submitted prior to construction. The landscaping plan is based on drought-tolerant plant species and would include efficient drip irrigation systems.

2. PROJECT DESCRIPTION

As shown in Figure 8, the proposed landscape plan includes the provision of numerous trees along the southern site boundary to screen the Project Site. The trees would assist in visually softening and obscuring views of the Project Site's various components. In addition to the trees, drought-tolerant, low-profile shrubs would be planted along the southern and eastern site boundaries. Existing landscaping along Gale Avenue would be preserved.

2.3.10 Office and Storage Building


The proposed Project includes a 20-foot by 60-foot building in the northeast part of the Project Site that would contain six offices and a conference room for employees and for occasional use by contractors and vendors. The proposed Project is anticipated to have up to two employees on-site daily. The building would include a break area and sanitary facilities and would be designed with architectural elements that comply with City development guidelines (see Figure 9, *Building Elevations and Colors*). The proposed building would have a stucco exterior and would be 15 feet high. Five parking spaces would be included on the Project Site, including three adjacent to the proposed building.

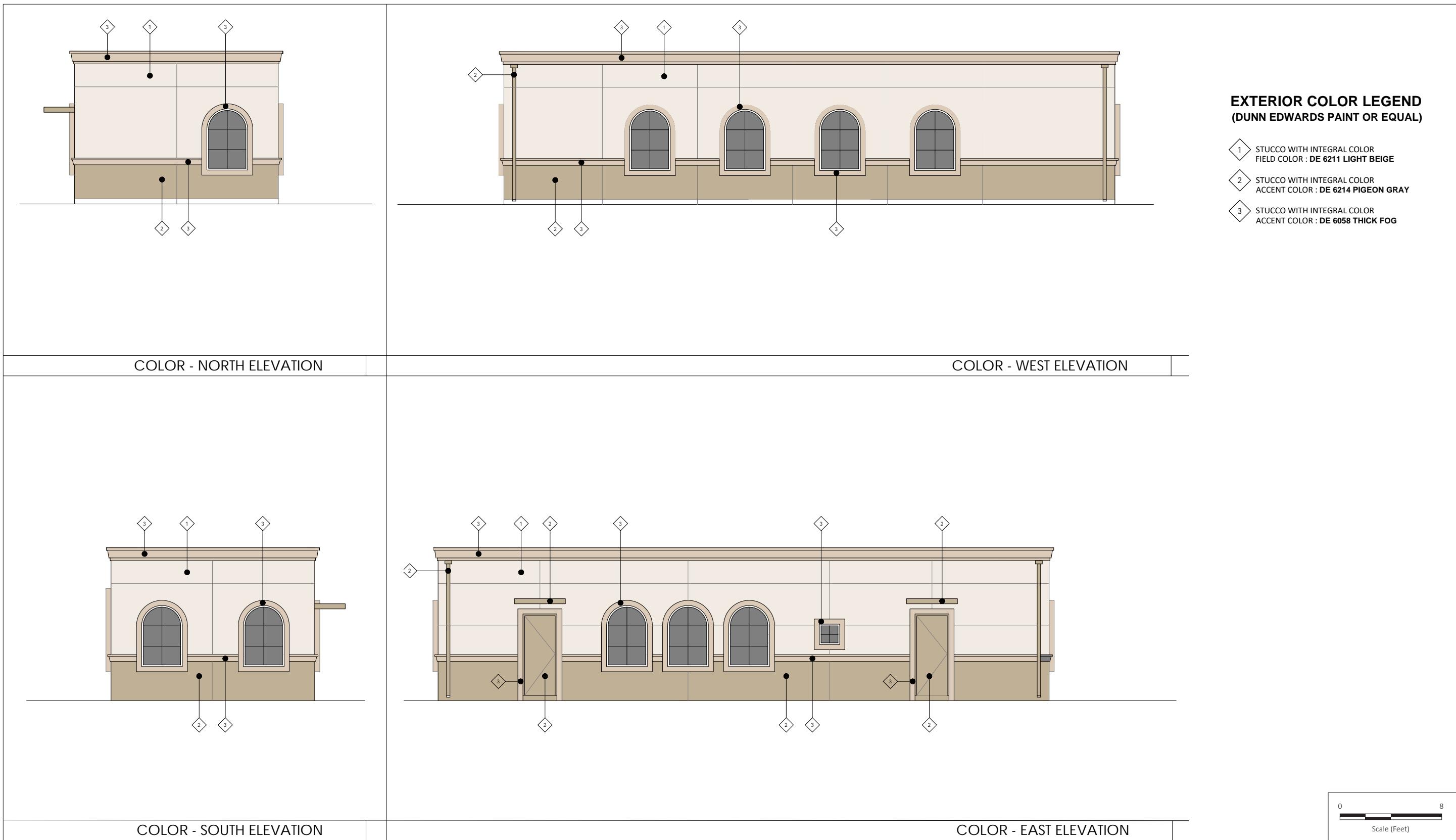
2.3.11 Southern California Edison Facility Modifications

SCE improvements associated with the proposed Project would be designed and implemented by SCE. The following description of anticipated SCE facilities is preliminary and subject to change.

Transmission

From the POCO pole in the proposed Project's high voltage substation, three overhead 220 kV conductors and a ground wire would cross the eastern property line of the Project Site directly into the SCE Walnut Substation. The design includes a POCO pole that is 140 feet high to provide minimum required clearance passing over an existing power line located just offsite to the east. The conductors would terminate at dead-end structures at both the proposed Project's substation and the SCE Walnut substation. SCE would install an approximate 120-foot-tall Tubular Steel Pole with footing and approximately 600 linear feet of 220 kV conductor and ground wire between the POCO pole and an existing 220 kV position located within Walnut Substation.

Source: TRC 2025.


Figure 8
Landscaping Plan

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

2. PROJECT DESCRIPTION

This page intentionally left blank.

Source: TRC 2025.

Figure 9
Building Elevations and Colors

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

2. PROJECT DESCRIPTION

This page intentionally left blank.

2. PROJECT DESCRIPTION

Substation

The proposed Project's 220 kV line would be terminated at the dead-end structure of an existing 220 kV position within the SCE Walnut Substation. To accommodate the proposed Project's line terminating at the existing position, the existing SCE Mesa 220 kV line would be relocated to a new double bus-double breaker 220 kV position within the SCE Walnut Substation. Additional physical structures include two 220 kV circuit breakers, four disconnect switches, 220 kV bus work, support structures, underground conduit and cabling, and breaker/line protection. New 220 kV conductor and ground wire would be installed from the new 220 kV position to an existing transmission tower within the SCE Walnut Substation.

Communications

The proposed Project includes the installation of two diverse communications routes between the proposed Project's substation and the SCE Walnut Substation. SCE would install communications fiber from two 4x4x6 manhole structures (POCO) located along the eastern Project Site property line to the existing SCE Walnut Substation communications room. For one route, SCE will install approximately 700 linear feet of new fiber in a new underground conduit. For the second route, SCE will install approximately 600 linear feet of new fiber in a new underground conduit.

Construction equipment and methods for SCE's work within the SCE Walnut Substation is similar to that which would on the Project Site under the proposed Project. It is anticipated that SCE would construct interconnection facilities during the later months of BESS construction, to be completed when the BESS construction is complete. All SCE construction would be within already developed areas.

2.3.12 Operation and Maintenance Activities

The BESS is designed for remote operation and would be available to charge or discharge electric energy 24 hours per day and seven days per week. One or two staff would be on-site as needed. In addition to on-site staff, the proposed Project is expected to typically require a four- to six-person crew for maintenance visits, once every two to three months on average. The proposed Project is estimated to generate six to ten direct technical jobs for site staff, periodic maintenance crews, and technicians. Water demand for operations would be minimal and limited to occasional flushing of fire water supply systems; potable water for a break room and restroom for the employees, contractors, and vendors; and water for landscaping to meet City requirements.

Electrical equipment and motors and fans for cooling the electrical equipment would generate low levels of noise, typically in the range of 60 to 80 dBA within several feet. Equipment would be

2. PROJECT DESCRIPTION

set back from property lines, and the 10-foot-high reinforced concrete perimeter would attenuate noise between the sources and the property line.

WASTE GENERATION

The proposed Project would not generate litter or large waste streams. Waste generated during routine operations would primarily be small quantities of packaging and shipping materials from occasional equipment replacement or maintenance, and small quantities of household-type waste from maintenance crews.

The proposed Project would occasionally generate spent batteries that would be returned to the battery manufacturer for recycling. Other equipment may also require replacement from time to time and would be removed from the site and recycled or disposed of in accordance with applicable State regulations for waste management.

Small quantities of hazardous waste such as aerosol cans or used rags may be generated by some maintenance activities and would be managed in accordance with California Code of Regulations Title 22 (22 CCR) requirements. Electronic waste would be managed as Universal Waste in accordance with 22 CCR.

OIL SPILL PREVENTION, CONTROL, AND COUNTERMEASURES

Oil-filled transformers would be subject to the Code of Federal Regulations Title 40, Part 112, and California Health and Safety Code Chapter 6.67 requirements for development and implementation of a Spill Prevention Control and Countermeasures Plan (SPCC), including secondary containment for aboveground bulk oil storage containers; routine inspections for oil containment integrity and ensuring collected stormwater is oil-free before it is released; and contingency planning for prompt and appropriate response to a potential release. SPCC requirements would also apply if a bulk fuel tank were provided on-site during construction.

HAZARDOUS MATERIALS, DESIGN SAFETY FEATURES, AND CONTINGENCY PLANNING

No routine storage of hazardous materials is anticipated, but some on-site equipment could contain hazardous materials. These include mineral oil in transformers, pressurized gas and coolant in climate control equipment, and backup generator fuel. Lithium-ion batteries occasionally become damaged and would be hazardous. The precise volume of mineral oil that would be present on-site as well as the quantities of lithium-ion batteries and refrigerant would not be known until equipment is selected for final design. Additional materials with a hazard of pressure release may also be included in the final design, such as compressed nitrogen in cylinders and fire suppression agent in equipment enclosures. All hazardous materials on-site that meet California Hazardous Materials Business Plan reporting requirements would be reported to

2. PROJECT DESCRIPTION

the online California Environmental Reporting System, including quantities, locations, largest containers, hazardous characteristics, and emergency response planning.

The proposed Project is required to obtain permits from the LACoFD for hazardous materials use and for battery energy storage, and Applicant coordination with LACoFD is required by the City as part of the application process, including submittal of a hazardous material disclosure form. The proposed Project is required to comply with all applicable regulations and standards for hazardous materials usage, including but not limited to, preparation of a Hazardous Materials Business Plan for hazardous materials in reportable quantities; a Spill Prevention, Control and Countermeasure Plan for oil storage in transformers and other equipment; and emergency response plans in accordance with multiple regulations.

DECOMMISSIONING

The proposed BESS is designed to be in operation for 35 years. After completion of operations, if not repowered with then-current technology, the proposed Project would be decommissioned, and equipment and facilities would be removed from the site except as agreed by the landowner and the City. The proposed Project would include measures to ensure the collection and recycling of batteries and to avoid the potential for batteries to be disposed of as municipal waste. All decommissioning activities would adhere to the requirements set by the City and be in accordance with all applicable federal and state regulations at the time of decommissioning and as determined by the City.

All equipment would be de-energized prior to removal, salvaged (where possible), placed in appropriate shipping containers, and secured in a truck transport trailer for shipment off-site to be recycled or disposed of at an appropriately licensed disposal facility. The demolition debris and removed equipment may be cut or dismantled into pieces that can be safely lifted or carried with the equipment being used. A collection and recycling program would be implemented during the decommissioning phase to promote recycling of the proposed Project's components and to minimize disposal in landfills.

APPLICANT PROPOSED MEASURES

To mitigate any potential impacts related to hazards and hazardous materials, the following Applicant-Proposed Measures (APM) will be implemented as a part of the proposed Project.

- **APM-1, Best Management Practices.** The project applicant will implement the Revised Soil and Groundwater Management Plan (SGMP) prepared for the proposed Project, which outlines best management practices (BMPs) for use in the event impacted soil or groundwater is encountered during construction of the proposed Project (Appendix K). The detailed list of BMPs to be implemented are outlined in the SMGP.

2. PROJECT DESCRIPTION

- **APM-2, Vapor Intrusion Mitigation System.** A vapor intrusion mitigation system (VIMS) will be implemented for the proposed office building to address the documented soil gas concentrations detected on-site.
- **APM-3, Emergency Action Plan.** The project applicant will prepare an Emergency Action Plan (EAP) for submittal to and approval by the Occupational Safety and Health Administration (OSHA) in accordance with the provisions of Standard 1910.38 (Emergency action plans) of Part 1910 (Occupational Safety and Health Standards). A copy of the OSHA-approved EAP will be submitted to the City of Industry for its records.
- **APM-4, Emergency Response Plan.** To mitigate exposure to carbon monoxide and smoke as a result of a potential (although unlikely) runaway thermal event, an emergency response plan will be prepared by a qualified fire safety engineer for the specific design of the proposed BESS facility pursuant to the Los Angeles County Fire Department's requirements. The plan will be reviewed and approved by the Los Angeles County Fire Department during the building permit process.

To mitigate any potential impacts related to biological resources, the following APM will be implemented as a part of the proposed Project.

- **APM-5, Pre-construction Nesting Bird Survey.** If construction is scheduled to commence during the nonnesting season (i.e., September 1 to January 31), no preconstruction surveys or additional measures are required. To avoid impacts to nesting birds on the project site, a qualified wildlife biologist shall conduct preconstruction surveys of all potential nesting habitat within the project site for construction activities that are initiated during the breeding season (i.e., February 1 to August 31). The surveying biologist must be qualified to determine the status and stage of nesting by migratory birds and all locally breeding raptor species without causing intrusive disturbance. The raptor survey shall focus on potential nest sites (e.g., cliffs, large trees, windrows) around the project site. Surveys shall be conducted no more than 14 days prior to construction activities. If active nests are found, a suitable buffer (e.g. 200-300 feet for common raptors; 30-50 feet for passerine species) shall be established around active nests and no construction within the buffer allowed until a qualified biologist has determined that the nest is no longer active (e.g. the nestlings have fledged and are no longer reliant on the nest). Encroachment into the buffer may occur at the discretion of a qualified biologist.

Implementation of the APMs would be provided as conditions of approval of the proposed Project and would be ensured through the City's building plan check and development review process.

2. PROJECT DESCRIPTION

2.3.13 Project Phasing and Construction

The proposed Project is scheduled to start construction in February 2026 and is expected to achieve its commercial operations date by early 2027. Project development, specifically all proposed improvements to be conducted within the confines of the Project Site, is anticipated to be completed in three general development phases: site preparation, including demolition, clearing, and grading; system construction and installation; and testing, commissioning, and cleanup.

The proposed Project would comply with the Occupational Safety and Health Administration Standards during and after the construction phase. Additionally, NFPA 70E Standards for hot electrical work would be strictly adhered to and enforced.

Construction would start with the removal of existing buildings, foundations, asphalt, concrete, and landscaping in the area to be developed. The existing street trees on the Gale Avenue frontage would be preserved, and additional street trees would be planted where existing driveways are removed for project construction. After all hazardous materials and universal wastes are removed from the buildings and fuel and water and power sources have been safely disconnected, the buildings, foundations, asphalt, and concrete would be demolished and the debris hauled off-site using common construction equipment such as excavators, bulldozers, and haul trucks. Most demolition debris would be metal and concrete rubble that would be sent to a recycler following City and State requirements. Because the Project Site is currently developed and relatively flat, minimal grading would be required to prepare the site for redevelopment. Rough grading would include conditioning foundation areas as needed to achieve proper and consistent compaction in the subgrade and over the rough graded surface, and achieving a cut/fill balance. Finish grading would consist of bringing the ground surface elevation contours to final grade with a gentle slope for positive drainage.

The existing SCE electric distribution line through the site would be maintained during demolition and grading until the replacement line can be installed and commissioned. Then the existing overhead line would be removed.

Following grading, BESS equipment foundations would be installed. Equipment placement and MV underground duct bank installation would begin after the equipment foundations have adequately cured. The on-site substation and SCE interconnection improvements would overlap with BESS equipment installation and would be scheduled to accommodate testing and commissioning prior to the scheduled commercial operating date. Installation of foundations, equipment, and underground duct banks and construction of the collector substation and interconnection improvements would use conventional earthmoving and building equipment, such as a truck-mounted drills, water truck, dump trucks, loader/backhoes, bobcats, man-lifts, and cranes. SCE would be responsible for all construction within the Walnut Substation.

2. PROJECT DESCRIPTION

A water truck would be kept on-site during construction and used to prevent excessive dust in accordance with South Coast Air Quality Management District (AQMD) requirements. The construction contractor would comply with all applicable South Coast AQMD requirements during construction. Permits to construct would be obtained from South Coast AQMD for the back-up generators.

Staging and parking for site construction would occur on-site as work progresses. If bulk fuel is temporarily stored on-site for construction, secondary containment would be provided. Sanitary facilities for construction workers would be provided by portable, self-contained units maintained by a licensed contractor. Staging and parking for SCE's construction is expected to occur within currently developed SCE property.

All constructed electrical equipment would be inspected and tested as appropriate prior to energizing. Construction would occur in strict accordance with all applicable local, state, and federal safety regulations, and a safety professional would be on-site full-time to monitor and implement a comprehensive project-specific safety program. Dust and construction emission controls would be implemented in accordance with South Coast AQMD requirements. Construction would occur in compliance with the State General Permit for stormwater discharges from construction sites, including implementation of a Storm Water Pollution Prevention Plan (SWPPP) with best management practices developed by a California Qualified SWPPP Developer and implemented by a Qualified SWPPP Practitioner. Areas where construction is complete or would not be active for an interim period would be stabilized as soon as practical. Compliance with the General Permit would continue until it is demonstrated to the Regional Water Quality Control Board that surface stabilization is complete and a Notice of Termination is accepted.

Waste generation from demolition would be short term and would be mostly recyclable materials, including concrete, asphalt, steel, and other metals. Waste from construction would primarily be reusable or recyclable packaging and shipping material such as wood pallets and crates, cardboard, and plastic.

2.4 REQUIRED PERMITS AND APPROVALS

2.4.1 Discretionary Actions and Approvals

Under CEQA Guidelines Section 15357, a discretionary action means a project that calls for an exercise of judgment or deliberation when the public agency (for the proposed Project, the public agency is the City of Industry) decides to approve or disapprove a particular activity, as distinguished from situations where the public agency or body merely has to determine whether there has been conformity with applicable statutes, ordinances, regulations, or other fixed standards. Industry is the lead agency under CEQA and has the principal approval authority over

2. PROJECT DESCRIPTION

the proposed Project. Following is a list of the discretionary actions and approvals required for implementation of the proposed Project.

- Adoption of a Mitigated Negative Declaration and Mitigation Monitoring and Reporting Program
- Approval of Zone Code text amendment (Zone Amendment No. 24-07) to allow the use with a CUP
- Approval of a Conditional Use Permit (CUP No. 24-03)
- Approval of Development Plan Application – Long Form (Development Plan No. 24-09)
- Approval of a Community Benefit Agreement (DA No. 25-01)
- Approval of a ROW Agreement (street improvement permit)
- Approval of an Easement Agreement

Additionally, City review of the proposed Project would produce a comprehensive set of draft conditions of approval that would be available for public review prior to consideration of the proposed Project for approval by the City's decision-making body. If approved, the proposed Project would be required to comply with all imposed conditions of approval in addition to mitigation measures included in this MND.

2.4.2 Non-discretionary Actions and Approvals

Under CEQA Guidelines Section 15369, non-discretionary or ministerial actions or approvals are those that involve little or no discretion but merely apply a checklist or clear requirements to the facts as presented and are often issued over the counter by a county or city staff (e.g., connections to utility infrastructure). These actions or approval are ones that require only conformance with a fixed standard or objective measurement and require little or no personal judgment by a government agency as to the wisdom or manner of carrying out the action. Generally, non-discretionary or ministerial permits require a public official to determine only that the project conforms with applicable zoning and building code requirements and that applicable fees have been paid.

The nondiscretionary/ministerial approvals required for implementation of the proposed Project include the issuance of demolition, grading, and building permits.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

2. PROJECT DESCRIPTION

This page intentionally left blank.

3. ENVIRONMENTAL EVALUATION

This section includes a checklist for each environmental topic, evaluates the significance criteria in the checklists, and, if necessary, provides mitigation measures to reduce potential impacts.

I. Aesthetics

Except as provided in Public Resources Code Section 21099, would the project:

Issues	Potentially Significant Impact	Less-than-Significant Impact with Mitigation Incorporated	Less-than-Significant Impact	No Impact
a) Have a substantial adverse effect on a scenic vista?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
c) In nonurbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

DISCUSSION

a) *Have a substantial adverse effect on a scenic vista?*

No Impact. For purposes of determining significance under CEQA, a scenic vista is generally considered a viewpoint that provides expansive views of a highly valued landscape for the benefit

3. ENVIRONMENTAL CHECKLIST

of the general public. Some scenic vistas are officially designated by public agencies. Vistas provide visual access or panoramic views to a large geographic area and are generally located at a point where surrounding views are greater than one mile away. Panoramic views are usually associated with vantage points over a section of urban or natural areas that provide a geographic orientation not commonly available. Examples of panoramic views might include an urban skyline, valley, mountain range, a large open space area, the ocean, or other water bodies. A substantial adverse effect to a scenic vista is one that degrades the view from such a designated view spot.

As shown in Figure 3, *Aerial Photograph*, the Project Site is heavily disturbed and in an urbanized area of the City that is surrounded by a mix of industrial, warehouse, and residential uses to the south in the unincorporated community of Hacienda Heights. The urban landscape character and features of the Project Site and surrounding area are consistent with and typical of urbanized areas of Industry. The proposed Project is an industrial project that would be consistent with the type of development in the area, which mainly consists of industrial and warehouse uses to the north, east, and west. The Project Site and surrounding area do not contain any visual resources or scenic vistas. Additionally, the City's General Plan does not designate any areas within the City as scenic vistas or visual resources (Industry 2014).

Furthermore, overall site topography can be characterized as relatively flat, with no notable change in elevation. There are no visible landforms (e.g., mountains, hills, creeks) from the Project Site or surrounding area; and no landforms are on or within proximity of the Project Site. Also, there are no designated open space resources on-site or in the vicinity of the Project Site, a designation typically used to determine the value of certain public vistas in order to gauge adverse effects. Therefore, based on the preceding, no impact would occur, and no mitigation measures are necessary.

b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

Scenic highways are a unique component of the region's circulation system as they traverse areas of scenic or aesthetic value. Per Caltrans, a highway may be designated as scenic depending on how much of the natural landscape can be seen by travelers, the scenic quality of the landscape, and the extent to which development intrudes upon the traveler's enjoyment of the view (Caltrans 2025).

The Project Site is in an urbanized area of the City and is not within or near an official state-designated scenic highway or an eligible state scenic highway. The nearest eligible state scenic highway is California State Route 57 (CA-57), between State Route 90 and State Route 60, and is approximately 6.5 miles east of the Project Site. The nearest official state-designated scenic highway is California State Route 91 (CA-91), between State Route 55 and South Weir Canyon Road near Anaheim Hills, and is approximately 16.8 miles southeast of the Project Site (Caltrans

3. ENVIRONMENTAL CHECKLIST

2018). Due to the distance, topography, and intervening development, the proposed Project would not impact scenic resources within a state scenic highway.

Furthermore, the Project Site area does not contain unique or locally important scenic resources. There are no rock outcroppings, significant vegetation, or historic buildings on-site. The existing industrial, warehouse, and manufacturing buildings on the Project Site are not of historic significance.

Therefore, no impact would occur, and no mitigation measures are necessary.

c) *In nonurbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?*

The assessment of aesthetic impacts is subjective by nature. Aesthetics generally refers to the identification of visual resources and their quality, as well as an overall visual perception of the environment. The Project Site is in an area of the City that qualifies as an “urbanized area”.

The Project Site is in an urbanized area of the City that is surrounded by a mix of industrial, warehouse, and residential uses to the south in the unincorporated community of Hacienda Heights. The urban landscape character of the Project Site is consistent with the surrounding uses and the urbanized areas of the City. As shown in Figure 3, the Project Site is currently developed with 161,781 square feet of building space and approximately 205,000 square feet of asphalt and concrete surfacing. Other site features include surface parking areas; outdoor storage and loading/unloading areas; driveways that connect to the internal parking and circulation improvements; and various hardscape and landscape improvements.

Project Construction Phase

Project construction activities would occur from February 2026 till early 2027 and would temporarily change the visual character of the Project Site and its surroundings. These effects would be typical of any site in Industry that undergoes development or redevelopment. Construction activities may be unsightly during the site preparation and construction phases; however, they would be temporary and would cease upon completion.

Additionally, and where necessary, construction fencing would be erected to help shield the construction areas and would also be temporary. The typical fencing to be provided (i.e., chain-link fencing with mesh fabric or similar screening material) would screen views of the construction site, including stockpiles, graded areas, construction equipment, and building materials.

Therefore, Project-related construction activities would not have a significant effect on the existing visual character or quality of the Project Site and its surroundings. Impacts would be less than significant, and no mitigation measures are necessary.

3. ENVIRONMENTAL CHECKLIST

Project Operation Phase

The proposed Project includes the operation of an approximately 400-megawatt BESS facility and associated site and infrastructure improvements on the Project Site. Figure 4a, *Proposed Site Layout*, illustrates the layout of the proposed BESS facility and associated improvements and equipment. Figures 5 and 6, *Proposed Site Elevations*, illustrate how the proposed Project would appear from the surrounding roadways and properties. Other site improvements include power inverters, transformers and other outdoor electrical equipment, telecommunication facilities, and site access, security, parking, and landscape improvements.

As shown in Figure 4a, *Proposed Site Layout*, the collector substation would be located in the southeastern part of the Project Site, just south and east of the battery enclosures. Figure 6, *Substation Elevation*, illustrates the profile view and the various components of the substation. As seen in Figure 7, *Tie-Line Pole Details*, an A-frame, riser pole, and POCO pole would be 80.5 feet, 102 feet, and 140 feet, respectively.

The proposed Project design would conform with the design parameters and standards of Title 17, Zoning, of the Industry Municipal Code, which is ensured through the City's development review process. The proposed Project would be designed and constructed in accordance with the applicable provisions of Title 17, including those related to landscaping, screening, and setbacks. Also, as shown in Figure 9, *Landscaping Plan*, the proposed landscape plan includes the provision of trees along the northern boundary to further help screen the improvements of the Project Site. The trees would assist in visually softening and impeding views of the Project Site's various components as seen from Gale Avenue and residential uses to the south across Gale Avenue. In addition to the trees, the existing landscaping would be utilized along Gale Avenue. The Project Site would also include landscaping along the northeast part of Ward Way. This would include shrubs and ground cover. The proposed landscaping would occur within the setback provided along the Gale Avenue and Ward Way Project Site frontage.

Project design would also go through the City's building plan check and development review process, which would ensure that the Project is implemented in a manner that would provide visual cohesiveness and compatibility along the Project Site frontages and with its surroundings.

Furthermore, the proposed Project would be consistent with the surrounding industrial uses and urban character as it would introduce a use that is compatible with the Project Site and its surroundings. Project development would not introduce a land use that is incompatible with the industrial nature and character of the surrounding area.

Based on the preceding, the proposed Project would not conflict with applicable zoning or regulations governing scenic quality, nor would it substantially degrade the visual character or quality of the Project Site and its surroundings. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

3. ENVIRONMENTAL CHECKLIST

d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

Lighting effects are associated with the use of artificial light during the evening hours. There are two primary sources of light—light emanating from building interiors passing through windows and openings, and light from exterior sources (i.e., street lighting, architectural building illumination, security lighting, parking lot lighting, landscape lighting, and signage). Excessive light and/or glare can impair vision, cause a nuisance, affect sleep patterns, and generate safety hazards when experienced by drivers. Uses such as residences, elderly care facilities, schools, and hotels are considered light sensitive, since occupants have expectations of privacy during evening hours and may be subject to disturbance by bright light sources. Light spill or trespass is considered a nuisance and is typically defined as the presence of unwanted light on properties adjacent to the property being illuminated. With respect to lighting, the degree of illumination may vary widely depending on the amount of light generated, height of the light source, presence of barriers or obstructions, type of light source, and weather conditions.

Glare is primarily a daytime occurrence caused by the reflection of sunlight or artificial light on surfaces of buildings or objects, including highly polished surfaces such as glass windows or reflective materials and, to a lesser degree, from broad expanses of light-colored surfaces. Perceived glare is the unwanted and potentially objectionable sensation experienced by a person as they look directly into the light source of a luminaire. Daytime glare generation is common in urban areas and is typically associated with buildings with exterior façades largely or entirely composed of highly reflective glass. Daytime glare can also be generated by light reflecting off passing or parked cars. Glare is produced during evening and nighttime hours by the reflection of artificial light sources such as automobile headlights. Glare generation is typically related to either moving vehicles or sun angles, although glare resulting from reflected sunlight can occur regularly at certain times of the day and year. Excessive glare not only impedes visibility but also increases the ambient heat reflectivity in a given area. Glare-sensitive uses include residences, hotels, transportation corridors, and aircraft landing corridors.

As shown in Figure 3, the Project Site is in an urbanized, heavily disturbed site and is surrounded by a mix of industrial and warehouse uses, which are not considered light-sensitive receptors (land uses that are sensitive to lighting). However, residential uses are located south of the Project Site and are considered light-sensitive receptors. Additionally, sources of light and glare already exist on-site and in the surrounding area.

Project Construction Phase

Construction activities that would occur within the Project Site would be limited to the hours set forth by Los Angeles County, which prohibits construction between 8 PM and 6:30 AM on weekdays and Saturdays, and all day on Sundays. With the exception of illumination during nighttime hours for safety and security purposes, no other nighttime lighting would be required until the proposed Project is operational. Additionally, construction activities are not anticipated

3. ENVIRONMENTAL CHECKLIST

to result in flat, shiny surfaces that would reflect sunlight or cause other natural glare and all material resulting from building demolition within the Project Site would be removed from the Project Site. Therefore, no short-term, construction-related impacts associated with light and glare would occur. Impacts would be less than significant, and no mitigation measures are necessary.

Project Operation Phase

Daytime Glare

The proposed Project will introduce buildings and structures on the Project Site that would be visible from the surrounding roadways and properties. These include the substation, battery energy storage enclosures for the lithium-ion batteries, power inverters and transformers, and overhead telecommunication equipment. However, the buildings and structures would not include reflective elements or materials such as glass windows and doors; the building and structures would be constructed of non-reflective materials and not result in any daytime glare.

Therefore, daytime glare impacts from Project-related buildings and structures would be less than significant and no mitigation measures are necessary.

Nighttime Lighting and Glare

Under existing conditions, the Project Site is developed with uses that currently contain sources of artificial lighting on-site. Project operation would introduce new sources of artificial light to the Project Site and surrounding area. These new sources of artificial lighting have the potential to increase nighttime light and glare in the project area, as well as create off-site light spill or trespass. Nighttime lighting and glare from the Project Site would be visible from the surrounding roadways and land uses.

Exterior security lighting for the BESS facility would be provided from dusk until dawn. Permanent motion-sensitive, directional security lights would be installed on-site to provide adequate illumination around the Project Site and points of ingress/egress. The proposed lighting system would provide operations and maintenance personnel with illumination for both normal and emergency conditions. Lighting would be designed to provide the minimum illumination needed to achieve safety and security objectives.

Although Project development would introduce new light sources to the Project Site and surrounding area, the proposed light sources would be similar to existing on-site lighting and to those of the surrounding mix of industrial, warehouse, and residential uses. Considering the existing sources of lighting on-site and in the surrounding vicinity, the amount and intensity of nighttime lighting proposed on-site would not be substantially greater than existing lighting. It is unlikely that conventional lighting and illuminated operations under the proposed Project would discernibly, much less adversely, affect ambient light conditions.

3. ENVIRONMENTAL CHECKLIST

Additionally, all exterior lighting will be oriented inward into the Project Site so as not to interfere with adjacent areas or vehicular traffic on adjacent public streets. Lighting provisions are intended to prevent glare, light trespass, and light pollution. All proposed exterior lighting would be designed, arranged, installed, directed, shielded, operated, and maintained in such a manner as to contain direct illumination on-site and prevent light and glare impacts -, thereby preventing excess illumination and light spillover onto surrounding land uses and/or roadways. Through the City's established site plan review processes, the City would ensure that final design of the proposed Project effectively minimizes potential light/glare overspill onto adjacent properties or roadways.

Furthermore, as shown in Figure 4a, the western and southern site boundaries would include the construction of a ten-foot wall. Construction of the wall along the southern boundary would help shield light and glare generated from the Project Site onto the residential uses to the south of the Project Site.

The provision of a minimum 10-foot-high solid perimeter wall would ensure that the proposed Project does not result in significant light impacts on surrounding uses or roadways. Compliance with these provisions is ensured through the City's development review and building plan check process. Therefore, operational nighttime light and glare impacts related to the on-site improvements would be less than significant and no mitigation measures are necessary.

II. Agriculture and Forestry Resources

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code Section 12220(g)), timberland (as defined by Public Resources Code Section 4526), or timberland zoned Timberland Production (as defined by Government Code Section 51104(g))?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
d) Result in the loss of forest land or conversion of forest land to non-forest use?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

DISCUSSION

a) *Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?*

The Project Site is mapped as Urban and Built-Up Land, and not as farmland on the California Important Farmland Finder (DOC 2022). As shown in Figure 2.3, Aerial Photograph, the Project Site is in a highly urbanized area of the City, and is mainly surrounded by industrial and warehouse land uses and residential uses. The Project Site does not contain farmland or other agricultural uses and is not adjacent or in proximity to such uses. Therefore, the proposed Project would not

3. ENVIRONMENTAL CHECKLIST

convert mapped farmland to nonagricultural use. No impact would occur, and no mitigation measures are necessary.

b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?

According to the City's zoning map, the Project Site is zoned Industrial. As shown in Figure 2.3, *Aerial Photograph*, the Project Site is urbanized and heavily disturbed and is surrounded predominantly by industrial and warehouse land uses. The Project Site does not contain active farmland or other agricultural uses and is not adjacent or in proximity to such uses. Additionally, the Project Site is not subject to a Williamson Act contract (CDC 2018). Therefore, Project implementation would not conflict with zoning for agricultural uses or a Williamson Act contract. Accordingly, no impact would occur, and no mitigation measures are necessary.

c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code Section 12220(g)), timberland (as defined by Public Resources Code Section 4526), or timberland zoned Timberland Production (as defined by Government Code Section 51104(g))?

Forest land is defined as "land that can support 10-percent native tree cover of any species, including hardwoods, under natural conditions, and that allows for management of one or more forest resources, including timber, aesthetics, fish and wildlife, biodiversity, water quality, recreation, and other public benefits" (California Public Resources Code § 12220(g)). Timberland is defined as "land...which is available for, and capable of, growing a crop of trees of any commercial species used to produce lumber and other forest products, including Christmas trees" (California Public Resources Code § 4526).

As shown in Figure 3, *Aerial Photograph*, the Project Site is urbanized and heavily disturbed (developed with industrial uses and adjacent to an electrical substation) and is surrounded predominantly by industrial and warehouse land uses. The Project Site is zoned Industrial. It is not zoned for agricultural use, and no such uses are present on-site or nearby. Additionally, the Industry General Plan and Municipal Code do not provide for any forest land preservation in the City, as there is no forest land within the City's jurisdiction. Furthermore, all trees on the Project Site are ornamental trees and are not cultivated for forest resources. Therefore, the proposed Project would not conflict with agricultural zoning. No impact would occur, and no mitigation measures are necessary.

d) Result in the loss of forest land or conversion of forest land to non-forest use?

See response to Section II.c, above. The Project Site is not designated or zoned for forest or timber land or used for forestry. As stated above, it is zoned Industrial. As substantiated in this section, no impact would occur, and no mitigation measures are necessary.

3. ENVIRONMENTAL CHECKLIST

e) *Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?*

See responses to Sections 3.2.a, b, and c, above. The Project Site does not contain farmland or other agricultural uses and are not adjacent to or in proximity to such uses. As substantiated in these sections, no impact would occur, and no mitigation measures are necessary.

III. Air Quality

Where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to make the following determinations. Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Conflict with or obstruct implementation of the applicable air quality plan?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
b) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
c) Expose sensitive receptors to substantial pollutant concentrations?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
d) Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

The analysis in this section is based partly on the following technical studies, which are included as Appendices A and B to this Initial Study:

- Air Quality and Greenhouse Gas Emissions Report, TRC, September 2025. (Appendix A)
- Construction Health Risk Assessment, TRC, June 2025. (Appendix B)

3. ENVIRONMENTAL CHECKLIST

DISCUSSION

a) Conflict with or obstruct implementation of the applicable air quality plan?

A consistency determination with the South Coast Air Quality Management District's (South Coast AQMD) Air Quality Management Plan (AQMP) plays an important role in local agency project review by linking local planning and individual projects to the AQMP. It fulfills the CEQA goal of informing decision makers of the environmental effects of the proposed Project under consideration early enough to ensure that air quality concerns are fully addressed. It also provides the local agency with ongoing information as to whether they are contributing to the clean air goals in the AQMP.

The regional emissions inventory for the South Coast Air Basin (SoCAB) is compiled by South Coast AQMD and Southern California Association of Governments (SCAG). Regional population, housing, and employment projections developed by SCAG are based, in part, on cities' general plan land use designations. These projections form the foundation for the emissions inventory of the AQMP. These demographic trends are incorporated into SCAG's 2024-2050 RTP/SCS, *Connect SoCal*, to determine priority transportation projects and vehicle miles traveled in the SCAG region (SCAG 2024). Because the AQMP strategy is based on projections from local general plans and SCAG's regional growth forecasts, projects that are consistent with the local general plan and would not introduce substantial population or employment growth not accounted for in the general plan are considered consistent with the AQMP.

As discussed in Section XIV, *Population and Housing*, the Project Site is in a developed industrial area of the City, and the proposed Project would establish a new BESS facility that would not introduce additional housing or significant number of employment opportunities. The proposed BESS facility would benefit the City and Southern California Edison (SCE) economically by creating temporary construction jobs, supporting ongoing maintenance services, and enhancing energy efficiency and reliability. Construction activities associated with the proposed Project would result in short-term employment only and would end upon Project completion. Therefore, proposed Project development would not induce substantial population or housing growth in the area.

According to the Air Quality and Greenhouse Gas Emissions Report prepared for the proposed Project (Appendix A), the proposed Project would be consistent with existing rules and measures contained in the South Coast AQMD 2022 Air Quality Management Plan (the 2022 Plan) via compliance with all applicable South Coast AQMD rules and regulations (Appendix A). The purpose of the 2022 Plan is to regulate long term emissions in accordance with population and infrastructure growth in the SoCAB. During construction activities that necessitate the use of heavy construction equipment, the proposed Project would be required to adhere to existing South Coast AQMD rules and regulations intended to reduce emissions of criteria pollutants. One of the key goals of the 2022 Plan is to meet the 2015 federal ozone standard which will require

3. ENVIRONMENTAL CHECKLIST

reducing emissions of NO_x (the key pollutant that creates ozone) by 67 percent more than is required by the current South Coast AQMD adopted rules and regulations. The primary way to achieve the required NO_x reductions is through replacing fossil fuel combustion with zero emission technologies. BESS facilities are an integral part of facilitating the growth of zero emission power generation technologies (South Coast AQMD 2022).

Moreover, as presented in the Air Quality impact discussion b), construction and operation of the proposed Project would not generate criteria air pollutant emissions that exceed South Coast AQMD's thresholds. Therefore, the proposed Project would not result in a cumulatively considerable net increase of any criteria air pollutant for which the project region is nonattainment under an applicable federal or State ambient air quality standards (AAQS).

Considering these factors, the proposed Project would not conflict or obstruct implementation of the 2022 Plan and would advance key goals therein to support zero emission power generation in the SoCAB. The proposed Project's impacts related to the 2022 Plan would be less than significant and no mitigation measures are necessary.

b) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

Air pollution is largely a cumulative impact. The nonattainment status of regional pollutants is a result of past and present development, and South Coast AQMD develops and implements plans for future attainment of AAQS. Based on these considerations, project-level thresholds of significance for criteria pollutants are relevant in the determination of whether a project's individual emissions would have a cumulatively significant impact on air quality.

Construction and Decommissioning Emissions

Construction impacts were evaluated using the California Emissions Estimator Model (CalEEMod) Version 2022.1.1.30 (Appendix A). CalEEMod is a computer model prepared for the California Air Pollution Control Officers Association which provides a uniform platform for government agencies, land use planners, and environmental professionals to estimate air quality and greenhouse gas impacts from land use development projects in California.

The construction activities would last approximately 12 months from February 2026 to January 2027 (Appendix A). The Air Quality and Greenhouse Gas Emissions Report prepared for the proposed Project (Appendix A) details on the construction phase duration, equipment utilized, and daily equipment operating hours. A five-day construction workweek was assumed. Emissions from construction vehicle trips were estimated using default CalEEMod vendor and hauling trip lengths and vehicle class data in combination with Project specific estimated onsite truck trip lengths and vehicle trip data (employee/vendor/hauling trips to the site) which is also provided in Attachment 1 of Appendix A. Limiting onsite vehicle speeds on unpaved roads to 25 miles per

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

hour was used assuming site safety protocols are unlikely to allow any higher speeds on the construction site. Watering of exposed surfaces, active demolition sites, and onsite hauling routes two times per day was assumed as a conservative minimum for consistency with South Coast AQMD Rule 403 requirements to minimize regional and localized particulate matter impacts. Additional details regarding the CalEEMod modeling can be found in The CalEEMod Summary Report provided as Attachment 2 of Appendix A.

Emissions that would occur from decommissioning at the end of the proposed Project's expected 35-year life cannot be reliably estimated given the likely advances in equipment, emissions controls, and energy. It is reasonably foreseeable that emissions from decommissioning activities will be no more than those for construction.

Table 1 shows that maximum daily emissions for VOC, NO_x, CO, SO₂, PM₁₀, and PM_{2.5} from construction-related activities would be less than their respective South Coast AQMD regional significance threshold values. Therefore, air quality impacts from Project-related construction activities would be less than significant and no mitigation measures are necessary.

Table 1 Maximum Daily Regional Construction Emissions

Construction Phase	Pollutants (lbs./day) ^{1, 2}					
	VOC	NO _x	CO	SO ₂	PM ₁₀	PM _{2.5}
Impact Analysis						
Maximum Daily Construction Emissions	3	22	27	<1	4	1
South Coast AQMD Regional Significance Threshold	75	100	550	150	150	55
Significant?	No	No	No	No	No	No

Source: CalEEMod Version 2022.1.1.30, South Coast AQMD 2023. (Appendix A)

¹ Includes implementation of fugitive dust control measures required by South Coast AQMD under Rule 403, including watering of exposed surfaces, active demolition sites, and onsite hauling routes two times per day and reducing speed limit to 25 miles per hour on unpaved surfaces.

Operational Emissions

According to the Air Quality and Greenhouse Gas Emissions Report prepared for the proposed Project (Appendix A), the proposed Project operation would not have stationary emissions and would have up to two employees on-site daily which would result in negligible operational mobile source emissions from worker trips as the proposed Project is designed for remote operation (Appendix A). The proposed Project's operational air quality impacts would primarily consist of emissions from the low number of worker trips and other vehicles used for occasional deliveries, maintenance, and other infrequent and minimal site visits.

3. ENVIRONMENTAL CHECKLIST

Overall, given the role of energy storage in State and regional planning for reduced pollutant emissions, the emission reductions that can be achieved with the proposed Project's additional storage capacity for renewable energy can be expected to exceed the proposed Project's operating emissions. Therefore, only emissions associated with construction of the proposed Project were quantified. Battery energy storage is a key component of local, state, and federal goals for reducing reliance on fossil fueled electric generation to reduce pollutant and greenhouse gas emissions and help limit climate change. Considering this, proposed Project operations can be expected to result in an overall reduction in pollutant emissions regionally and a net beneficial impact on air quality. The magnitude of the expected net reduction in emissions cannot be accurately determined and, therefore, has not been quantified.

Therefore, operation of the proposed Project would generate nominal operational emissions and would not exceed the South Coast AQMD's regional operation-phase significance thresholds. Impacts to the regional air quality associated with operation of the proposed Project would be less than significant and no mitigation measures are necessary.

c) *Expose sensitive receptors to substantial pollutant concentrations?*

The proposed Project could expose sensitive receptors to elevated pollutant concentrations if it causes or significantly contributes to elevated pollutant concentration levels. Unlike regional emissions, localized emissions are typically evaluated in terms of air concentration rather than mass so they can be more readily correlated to potential health effects.

Construction

Construction-Phase Localized Impacts

As part of South Coast AQMD's environmental justice program, there has been increased attention focused on localized effects of air quality. South Coast AQMD has developed localized significance threshold (LST) methodology and mass rate look-up tables by source receptor area (SRA) that can be used voluntarily to determine whether a project may generate significant adverse localized air quality impacts. Additionally, South Coast AQMD has developed specific guidance for projects evaluating construction impacts using CalEEMod. The LST methodology and mass rate look-up tables require completion of a few key steps, which are summarized in the Appendix A.

Air pollutant emissions generated by construction activities would cause temporary increases in air pollutant concentrations. Table 2, *Localized Construction Emissions*, shows the maximum daily construction emissions (pounds per day) generated during on-site construction activities compared with the South Coast AQMD's LST lookup tables for sensitive receptors within 30 meters of the Project Site for NO_x, CO, PM₁₀ and PM_{2.5} in SRA 11: South San Gabriel Valley. As shown in Table 2, construction of the proposed Project would not generate construction-related on-site emissions that would exceed South Coast AQMD's LST 2-acre lookup table. Thus, proposed

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Project-related construction activities would not have the potential to expose sensitive receptors to substantial pollutant concentrations. Localized air quality impacts from construction activities would be less than significant and no mitigation measures are necessary.

Table 2 Localized Construction Emissions

	Pollutants(lbs/day) ¹			
	NO _x	CO	PM ₁₀	PM _{2.5}
Maximum Daily Onsite Emissions	21.5	26.9	3.41	0.82
South Coast AQMD 2.00 Acre LST ²	121	1,031	7	5
Exceeds LST?	No	No	No	No

Source: CalEEMod Version 2022.1.1.30. (Appendix A)

¹Total proposed Project daily onsite and offsite maximum emissions for NO_x and CO were conservatively used.

²The South Coast AQMD LST lookup tables are provided for 1, 2, and 5 maximum daily disturbed acres. The 2-acre lookup table was conservatively used based on the equipment usage and estimated maximum disturbed acreage for the proposed Project.

Construction Health Risk Assessment

Project impacts related to increased health risk can occur by generating emissions of toxic air contaminants (TACs) and air pollutants. Construction activity under the proposed Project would generate dust and equipment exhaust that can affect nearby sensitive receptors. The nearest sensitive-receptor land use is the residences located approximately 30 meters to the south of the Project Site on Gale Avenue. Thus, a construction health risk assessment (HRA) has been prepared for the proposed Project (Appendix B).

Emissions from construction equipment primarily consist of diesel particulate matter (DPM). In 2015, the Office of Environmental Health Hazards Assessment (OEHHA) adopted guidance for preparation of health risk assessments, which included the development of a cancer risk factor and non-cancer chronic reference exposure level for DPM over a 30-year time frame (OEHHA 2015). The complete methodology is found within Appendix Construction HRA Memo of this Initial Study and the results of the construction HRA are shown in Table 3.

3. ENVIRONMENTAL CHECKLIST

Table 3 Construction Risk Summary

Receptor	Cancer Risk (per million)	Chronic Hazards	Cancer Burden
MER – Resident	5	<0.1	<0.1
MER – Worker	<1	<0.1	NA
South Coast AQMD's Significance Threshold	10	1.0	0.5
Significant?	No	No	No

Source: Lakes AERMOD View, Version 13.0.0. (Appendix Construction B)

Notes: Cancer risk calculated using 2015 OEHHA HRA Guidance Manual. **Bold** = exceeds threshold. MER = maximally exposed receptor.

As shown in Table 3, the maximum offsite cancer risk for the residential MER from the proposed Project-related construction emissions was calculated to be approximately 5 in one million and the worker MER to be less than 1 in one million. Consequently, cancer risks experienced by nearby receptors would be within acceptable limits. For non-carcinogenic effects, the chronic hazard index identified for each toxicological endpoint equaled less than one for each identified receptor. Therefore, chronic non-carcinogenic hazards are within acceptable limits. Lastly, the cancer burden is determined by the product of population within the 1 in one million cancer risk impact zone, which includes fewer than 50 homes in the project vicinity. Therefore, to reach a community cancer burden of 0.5, there would need to be 500,000 people within the 1 in one million cancer risk impact zone or 100,000 people within the 5 in one million cancer risk impact zone. Because the cancer risk impact zone for both 1 and 5 in one million cancer risk includes only 50 homes, the community cancer burden resulting from construction of the proposed Project was identified as orders of magnitude less than 0.5, the South Coast AQMD's significance threshold, and would not result in a significant impact.

Because the cancer risk, chronic hazards, and cancer burden for the residential and worker MER would not exceed the South Coast AQMD's significance thresholds during the proposed Project's construction, the proposed Project-related construction activities would not expose sensitive receptors to substantial TAC concentrations.

Based on the preceding, impacts would be less than significant, and no mitigation measures are necessary.

Operation

Operational Health Risks

In general, no TACs are emitted during normal operation of a BESS facility. However, there is the potential for TAC emissions in the event of an emergency fire that can occur if batteries overheat

3. ENVIRONMENTAL CHECKLIST

leading to a thermal runaway reaction and shutdown systems malfunction. Section IX, *Hazards and Hazardous Materials*, includes information pertaining to an unlikely hazardous release due to an emergency event.

CO Hotspots

Vehicle congestion has the potential to create pockets of CO called hotspots. Hotspots are typically produced at intersections, where traffic congestion is highest and vehicles back up and idle for longer periods and are subject to reduced speeds. These pockets could exceed the state one-hour standard of 20 parts per million (ppm) or the eight-hour standard of 9.0 ppm. Because CO is produced in greatest quantities from vehicle combustion and does not readily disperse into the atmosphere, adherence to AAQS is typically demonstrated through an analysis of localized CO concentrations.

The SoCAB has been designated attainment under both the national and California AAQS for CO. However, South Coast AQMD does not have an adopted screening criteria to determine whether a project may have the potential to generate a CO hotspot. According to Bay Area Air District, under existing and future vehicle emission rates, a project would have to increase traffic volumes at a single intersection to more than 44,000 vehicles per hour—or 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited—in order to generate a significant CO impact (Bay Area Air District 2023).

Based on the traffic study, traffic associated with the proposed Project construction phase is not expected to have an adverse effect on the surrounding transportation network. The existing industrial land use generates 218 more daily trips and 33 more peak hour trips than those estimated for the proposed Project's construction phase (Appendix Traffic). With respect to proposed Project operation, the proposed Project would have up to two employees on-site daily and require infrequent maintenance vehicle trips, which would result in negligible impacts from worker trips as the proposed Project is designed for remote operation. Therefore, the proposed BESS facility would generate negligible daily trips and would not increase peak hour traffic volumes at affected intersections to more than the Bay Area Air District's recommended hourly screening criteria. Based on these considerations, the proposed Project would result in a less than significant impact to air quality with regard to potential CO hotspots. No mitigation measures are necessary.

d) Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

The threshold for odor is if a project creates an odor nuisance pursuant to South Coast AQMD Rule 402, Nuisance, which states:

3. ENVIRONMENTAL CHECKLIST

A person shall not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property. The provisions of this rule shall not apply to odors emanating from agricultural operations necessary for the growing of crops or the raising of fowl or animals.

Construction

Emissions from construction equipment, such as diesel exhaust and volatile organic compounds from architectural coatings and paving activities may generate odors. However, these odors would be low in concentration, temporary, and would not affect a substantial number of people. By the time such emissions reached any sensitive receptor sites, they would be diluted to well below any level of air quality concern. Therefore, impacts associated with construction-generated odors are considered less than significant and no mitigation measures are necessary.

Operation

The type of facilities that are considered to have objectionable odors include wastewater treatment plants, compost facilities, landfills, solid waste transfer stations, fiberglass manufacturing facilities, paint/coating operations (e.g., auto body shops), dairy farms, petroleum refineries, asphalt batch plants, chemical manufacturing, and food manufacturing facilities. The proposed Project involves the operation of an approximately 400-megawatt (MW) BESS facility and associated infrastructure improvements. As a result, the proposed Project would not fall within the objectionable odors land uses. Odor impacts would be less than significant, and no mitigation measures are necessary.

**MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY**

3. ENVIRONMENTAL CHECKLIST

IV. Biological Resources

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
c) Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

3. ENVIRONMENTAL CHECKLIST

The analysis in this section is based partly on the following technical study, which is included as Appendix C to this Initial Study:

- Biological Resources Assessment, TRC, June 2024.

DISCUSSION

a) *Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?*

The Project Site is an urbanized, heavily disturbed site and is surrounded predominantly by industrial and warehouse uses (see Figure 3, *Aerial Photograph*). According to the biological resources analysis (BRA) prepared for the proposed Project (Appendix C), no sensitive plant or wildlife species have a moderate or high potential to occur on or within proximity of the Project Site. No historical occurrences of federally or state-listed species were identified within the Project Site boundary, and the site is not located within any designated critical habitat. The proposed Project would not result in direct or indirect impacts on special-status species. No impact would occur, and no mitigation measures are necessary.

b) *Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?*

According to the BRA prepared for the proposed Project (Appendix B), the Project Site does not support any riparian habitat or sensitive natural communities. The site is fully developed and disturbed, with no surface water bodies, drainages, streams, or other habitat types that would support riparian vegetation or communities considered sensitive by the California Department of Fish and Wildlife (CDFW) or U.S. Fish and Wildlife Service (USFWS). As such, implementation of the proposed Project would not impact any riparian habitat or sensitive natural communities. No impact would occur, and no mitigation measures are necessary.

c) *Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?*

According to the BRA prepared for the proposed Project (Appendix B), no jurisdictional features, such as wetlands or other waters subject to regulation under the Clean Water Act or California Fish and Game Code, were identified on the Project Site. The site is fully developed and does not contain any hydrologic features that would support wetland vegetation or soil conditions.

3. ENVIRONMENTAL CHECKLIST

Therefore, implementation of the proposed Project would not affect any state or federally protected wetlands. No impact would occur, and no mitigation measures are necessary.

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

Wildlife corridors refer to established migration routes commonly used by resident and migratory species for passage from one geographic location to another. Movement corridors may provide favorable locations for wildlife to travel between different habitat areas, such as foraging sites, breeding sites, cover areas, and preferred summer and winter range locations. They may also function as dispersal corridors allowing animals to move between various locations within their range.

According to the BRA prepared for the proposed Project (Appendix B), the Project Site is developed, disturbed, and surrounded by industrial and warehouse uses (see Figure 3, *Aerial Photograph*). No natural open space, water features, or vegetated corridors are present that could support native wildlife movement or serve as migratory corridors or nursery sites. The proposed Project would not obstruct any established movement pathways or disrupt access to nursery habitat. The Project Site is not located in any regional wildlife corridor or habitat linkage. On a local level, the Project Site is just north of State Route 60, which is a nearly unsurpassable barrier for north-south wildlife movement. Although the Project Site may provide some habitat for limited wildlife movement and live-in habitat—particularly for avian species and small to medium mammals that are adapted to urban settings—the Project Site does not function as a wildlife corridor or nursery site. Additionally, the site and environs are not identified or designated as a wildlife corridor or nursery site.

Additionally, the Migratory Bird Treaty Act (Code of Federal Regulations Title 50, Part 10 and Part 21) protects migratory birds, their occupied nests, and their eggs from disturbance or destruction. “Migratory birds” include all nongame, wild birds found in the U.S. except for the house sparrow (*Passer domesticus*), European starling (*Sturnus vulgaris*), and rock pigeon (*Columba livia*). There are mature ornamental trees and some vegetation within the Project Site that could provide nesting habitat for migratory birds and raptors.

However, removal of ornamental trees and vegetation from the Project Site would be required to implement the proposed Project; therefore, the proposed Project could result in direct impacts on migratory birds if they are nesting in the affected trees and vegetation during construction. Implementation of APM-5 (which is in Chapter 3, *Project Description*, and reproduced below), which would be added as a condition of approval for the proposed Project and ensure compliance with the Migratory Bird Treaty Act, would reduce potential impacts to migratory birds to less than significant.

3. ENVIRONMENTAL CHECKLIST

- **APM-5 - Pre-construction Nesting Bird Survey.** If construction is scheduled to commence during the nonnesting season (i.e., September 1 to January 31), no preconstruction surveys or additional measures are required. To avoid impacts to nesting birds on the Project site, a qualified wildlife biologist shall conduct preconstruction surveys of all potential nesting habitat within the project site for construction activities that are initiated during the breeding season (i.e., February 1 to August 31). The surveying biologist must be qualified to determine the status and stage of nesting by migratory birds and all locally breeding raptor species without causing intrusive disturbance. The raptor survey shall focus on potential nest sites (e.g., cliffs, large trees, windrows) around the Project site. Surveys shall be conducted no more than 14 days prior to construction activities. If active nests are found, a suitable buffer (e.g., 200 to 300 feet for common raptors; 30 to 50 feet for passerine species) shall be established around active nests and no construction within the buffer allowed until a qualified biologist has determined that the nest is no longer active (e.g., the nestlings have fledged and are no longer reliant on the nest). Encroachment into the buffer may occur at the discretion of a qualified biologist.

Less than significant, with the incorporation of the aforementioned APM.

e) *Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?*

The City does not have an adopted tree preservation ordinance or other biological resource policies that apply to the Project Site. The BRA confirmed that the site does not support any native trees or protected biological resources. Therefore, the proposed Project would not conflict with any applicable local biological protection policies or ordinances. No impact would occur, and no mitigation measures are necessary.

f) *Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?*

The Project Site area is urbanized, heavily disturbed and is surrounded predominantly by industrial and warehouse uses (see Figure 3). According to the BRA prepared for the proposed Project (Appendix B), the Project Site is not located within the boundaries of any Habitat Conservation Plan, Natural Community Conservation Plan, or other adopted conservation plan. The proposed Project would not interfere with or conflict with the goals or provisions of any such plan. No impact would occur, and no mitigation measures are necessary.

3. ENVIRONMENTAL CHECKLIST

V. Cultural Resources

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Cause a substantial adverse change in the significance of a historical resource pursuant to § 15064.5?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to § 15064.5?	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
c) Disturb any human remains, including those interred outside of dedicated cemeteries?	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

The analysis in this section is based on the following technical study, which is confidential and not available for public review pursuant to CEQA Guidelines Section 15120(d):

- Cultural Records Search Results, TRC, June 2024

DISCUSSION

a) *Cause a substantial adverse change in the significance of a historical resource pursuant to § 15064.5?*

Section 15064.5 defines historic resources as resources listed or determined to be eligible for listing by the State Historical Resources Commission, a local register of historical resources, or the lead agency. Generally a resource is considered “historically significant” if it meets one of the following criteria:

- i) Is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage;
- ii) Is associated with the lives of persons important in our past;
- iii) Embodies the distinctive characteristics of a type, period, region or method of construction, or represents the work of an important creative individual, or possesses high artistic values;

3. ENVIRONMENTAL CHECKLIST

iv) Has yielded, or may be likely to yield, information important in prehistory or history.

According to the Cultural Records Search conducted for the proposed Project (TRC 2024), a review of historic maps and aerials indicated that the Project Site remained undeveloped until sometime between 1953 and 1966, when development and paving appeared. The Project Site is currently developed with industrial buildings and is located in an area characterized by industrial and warehouse uses. Development of the proposed Project would require demolition of all buildings and structures on-site.

As part of cultural records search conducted for the Project Site, the following resource listings were reviewed: the California Register of Historical Resources (CRHR), the California State Historic Resources Inventory, the National Register of Historic Places (NRHP), the Office of Historic Preservation (OHP), the California Historical Landmarks, the California Points of Historical Resources (TCR 2024). Based on the search, no historical buildings or structures were listed or determined eligible for listing on any of the resource listings.

Additionally, historic maps and aerial photos indicate that the buildings and associated infrastructure features that exist on-site were developed after 2000, which would make them ineligible for local, state, or federal listing. Therefore, the Project Site does not contain any historic resources as defined by CEQA (TRC 2024).

Therefore, the proposed Project would not cause a substantial adverse change in the significance of a historical resource. Impacts would be less than significant, and no mitigation measures are necessary.

b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to § 15064.5?

Archaeological resources are prehistoric or historic evidence of past human activities, including structural ruins and buried resources. The Project Site is in a highly urbanized area and has already been disturbed due to grading and construction activities associated with current and past uses. The Project Site is largely flat, and the proposed Project would be above ground level, with no subterranean floors or basements. Accordingly, limited ground disturbance would be required to implement the proposed Project. Given the highly disturbed condition of the Project Site and its surroundings and the limited ground disturbance proposed, the potential for development of the proposed Project to impact an unidentified archaeological resource is considered low.

However, there is the potential for encountering intact, buried cultural resources during ground disturbance. In the event that unanticipated archaeological resources are encountered during Project implementation, impacts to these resources could be significant. As such, Mitigation Measures CUL-1 and CUL-2 would be implemented to ensure that impacts to unanticipated

3. ENVIRONMENTAL CHECKLIST

archaeological resources and human remains would be treated properly resulting in a less than significant impact.

- **Mitigation Measure CUL-1 Retention of a Qualified Archaeologist.** Prior to the issuance of grading permits, a qualified archaeologist shall be retained by the project applicant to monitor during ground-disturbing activities in native soils and address any inadvertent discoveries identified for the duration of construction activities. In consideration of the potential to encounter intact cultural deposits beneath imported (non-native) fill soils and/or existing development, the qualified archaeologist shall survey the development area once fill soils have been removed to ensure that no cultural deposits underly the fill layer. If it is determined, based on the surveys during ground-disturbing activities into native soils, that cultural resources are present or may be present that may be impacted during project construction, further study including subsurface testing as well as archaeological monitoring may be warranted. If it is determined that monitoring is warranted, a qualified archaeological principal investigator, meeting the Secretary of the Interior's Professional Qualification Standards, shall oversee and adjust monitoring efforts as needed (increase, decrease, or discontinue monitoring frequency) based on the observed potential for construction activities to encounter cultural deposits or material. The archaeological monitor shall be responsible for maintaining daily monitoring logs.
- **Mitigation Measure CUL-2 Inadvertent Discovery Treatment and Protocol.** In the event that archaeological resources (sites, features, or artifacts) are exposed during construction activities, all construction work occurring within 50 feet of the find shall immediately stop and a qualified archaeologist shall be notified immediately to assess the significance of the find and determine whether or not additional study is warranted. If human remains or suspected human remains are discovered, all construction work occurring within 50 feet of the find shall immediately stop. Depending on the significance of the find, the archaeologist may simply record the find and allow work to continue. If the discovery proves to be significant under CEQA as determined by the qualified archaeologist, additional work such as preparation of an archaeological treatment plan, testing, data recovery, or monitoring may be warranted. Within 60 days following completion of ground disturbance, an archaeological monitoring report shall be prepared and submitted to the City of Industry for

3. ENVIRONMENTAL CHECKLIST

review. The report shall document compliance with approved mitigation, document the monitoring efforts, and include an appendix with daily monitoring logs. The final report shall be submitted to the South Central Coastal Information Center.

Less than significant impact, with the incorporation of the aforementioned mitigation measures.

c) *Disturb any human remains, including those interred outside of dedicated cemeteries?*

There are no known human remains or cemeteries on or near the Project Site. The Project Site is a heavily disturbed, urbanized area that has previously been graded and developed with industrial uses and associated infrastructure. The surrounding vicinity is similarly developed with existing buildings, roadways, and other urbanized land uses. The Project Site is largely flat and previously disturbed, and implementation of the proposed Project would not require deep excavation. Accordingly, the likelihood that human remains may be discovered during site clearing and grading activities is considered extremely low.

However, the proposed Project would involve grading and excavation that could extend into native soils and therefore could disturb previously undiscovered subsurface human remains. In the unlikely event that human remains are uncovered during ground-disturbing activities, California Health and Safety Code Section 7050.5 requires that disturbance of the site shall halt and the Los Angeles County Coroner be notified. The Coroner must determine the nature of the remains within two working days. If the remains are determined to be of Native American origin, the Coroner must contact the Native American Heritage Commission (NAHC) within 24 hours, and the NAHC would then designate a Most Likely Descendant (MLD). The MLD would be provided access to the discovery and given 48 hours to make recommendations regarding treatment of the remains.

Additionally, implementation of Mitigation Measures TCR-1 through TCR-3 would ensure that the Coroner is immediately notified and that appropriate procedures are followed in the event that human remains are encountered. Compliance with existing law and these mitigation measures would reduce potential impacts to human remains to a less than significant level.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

VI. Energy

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
b) Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

DISCUSSION

a) *Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?*

The following discusses the potential energy demands from short-term construction and long-term operational energy consumption associated with the proposed Project.

Short-Term Construction Impacts

Electrical Energy

Electricity use during construction of the proposed Project would vary during different phases of construction. Construction of the proposed Project would not require electricity to power most construction equipment. Later construction phases could result in the use of electricity-powered equipment for interior construction and architectural coatings. It is anticipated that the majority of electric-powered construction equipment would be hand tools (e.g., power drills, table saws) and lighting, which would result in minimal electricity usage during construction activities. Therefore, proposed Project-related construction activities would not result in wasteful or unnecessary electricity demands. Impacts would be less than significant, and no mitigation measures are necessary.

3. ENVIRONMENTAL CHECKLIST

Natural Gas Energy

It is not anticipated that construction equipment used for the proposed Project would be powered by natural gas, and no natural gas demand is anticipated during construction. Therefore, impacts would be less than significant with respect to natural gas usage and no mitigation measures are necessary.

Transportation Energy

Transportation energy use during construction would come from the transport and use of construction equipment, delivery vehicles and haul trucks, and construction employee vehicles. In addition, transportation energy demand would come from use of off-road construction equipment. It is anticipated that the majority of off-road construction equipment, such as those used during demolition, drilling, grading, and foundation, would be gas or diesel powered.

The use of energy resources by vehicles and equipment would fluctuate according to the phase of construction and would be temporary. In addition, all construction equipment would cease operating upon completion of proposed Project construction. Thus, impacts related to transportation energy use during construction would be temporary and would not require expanded energy supplies or the construction of new infrastructure.

Moreover, to limit wasteful and unnecessary energy consumption, the construction contractors are anticipated to minimize nonessential idling of construction equipment during construction, in accordance with Section 2449 of the California Code of Regulations, Title 13, Article 4.8, Chapter 9. Construction trips would also not result in unnecessary use of energy since the Project Site is located in the southeastern part of Los Angeles County area and is served by numerous regional freeway systems (e.g., State Route 60) that provide the most direct routes from various areas of the region. Thus, energy use during construction of the proposed Project would not be considered inefficient, wasteful, or unnecessary. Impacts would be less than significant, and no mitigation measures are necessary.

Long-Term Impacts During Operation

Electrical and Natural Gas Energy

The proposed Project would be all-electric and would not use natural gas during operation. The proposed Project would provide a service to the regional electric grid by receiving energy (charging) from the Southern California Edison (SCE) electric transmission system, storing energy on-site, then delivering energy (discharging) back to the SCE Walnut Substation (Substation Area). Overall, implementation of the proposed Project would result in operation of an approximately 400-megawatt BESS facility and generate a total electricity demand of 584,000 kilowatt-hours per year. While operation of the proposed Project would result in increased electricity demand from

3. ENVIRONMENTAL CHECKLIST

on-site lighting, climate control, and security appurtenances, it would also facilitate the integration of renewable energy from regional solar and wind resources into the electric grid, supporting overall grid reliability and resilience.

Overall, the proposed Project would support the use of renewable energy sources and would be consistent with the goals outlined in Appendix F of the CEQA Guidelines. Therefore, the proposed Project would not result in wasteful or unnecessary consumption of energy resources. Impacts would be less than significant, and no mitigation measures are necessary.

Transportation Energy

The proposed Project would consume transportation energy during operations from the use of motor vehicles associated with employees. The proposed Project would have up to two employees on-site daily and require infrequent maintenance vehicle trips, which will result in negligible impacts from worker trips as the proposed Project is designed for remote operation. Therefore, the proposed BESS facility would generate negligible daily trips, and the proposed Project would screen out from the City's screening threshold of 110 vehicle trips per day for a vehicle miles traveled (VMT) assessment and would result in a less than significant VMT impact (Appendix R). The limited number of proposed Project-related vehicle trips would contribute to minimizing VMT and transportation fuel demands.

Furthermore, the Project Site would be accessible by the regional freeway systems (e.g., State Route 60) that provide the most direct routes from various areas of the region. Thus, operation-related fuel usage associated with the proposed Project would not be considered inefficient, wasteful, or unnecessary. Overall, energy impacts as it pertains to operation-related transportation energy would be less than significant and no mitigation measures are necessary.

b) Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

The following evaluates consistency of the proposed Project with California's Energy Action Plan and Long-Term Energy Efficiency Strategic Plan.

Energy Action Plan

The Energy Action Plan was last updated in 2008 and was developed by the California Public Utilities Commission (CPUC), California Energy Commission (CEC), and California Power Authority to create a unified State energy policy framework. It serves as one of the State's strategies for planning for reliable, affordable, and environmentally responsible energy procurement and supply. The Energy Action Plan further establishes a "loading order" in identifying priorities for statewide energy planning efforts, which translates into first prioritizing meeting existing demand with cost-effective energy efficiency and demand response efforts, then using renewable energy resources and distributed generation, and finally meeting the remaining energy demand with renewable or otherwise "clean" fossil-fuel power generation resources (e.g., renewable natural

3. ENVIRONMENTAL CHECKLIST

gas). Other priorities identified in the Energy Action Plan but not directly related to local agencies, include modernizing transmission and distribution infrastructure, enhancing reliability in electricity and natural gas markets, and ensuring affordable access to all Californians. Therefore, a project can be assessed for consistency with the Energy Action Plan by examining how the proposed development generally supports or conflicts with the strategies of the plan, such as promoting energy resource deployment consistent with the plan's loading order.

The proposed BESS facility supports the Energy Action Plan by enhancing grid reliability and enabling storage of renewables and discharged back to the SCE Walnut Substation (Substation Area) when necessary. By storing excess electricity generated from solar and wind resources and discharging it during periods of high demand or low renewable output, BESS helps balance the grid and reduce reliance on fossil-fuel-powered plants. It is intended to reliably capture and manage renewable energy, using proven and established energy storage technology that is efficient, has low maintenance requirements, and is recyclable. Operation of the proposed BESS facility would store electricity when excess generation capacity is available for use at a later time, thereby allowing more use of intermittent renewable energy sources. In general, the installation of a BESS facility would further CARB's goals for renewable energy production and the state's goal of transitioning to 100 percent carbon-free electricity. Therefore, the proposed Project would be considered consistent with the Energy Action Plan strategies. No impact would occur and no mitigation measures are necessary.

Long-Term Energy Efficiency Strategic Plan

The Long-Term Energy Efficiency Strategic Plan was last updated in 2011 and serves as the State's long-term roadmap to make energy efficiency a top priority in supporting California's grid harmonization and renewable energy integration efforts. The Long-Term Energy Efficiency Strategic Plan serves as a living strategic document for State and local agencies and emphasizes the integration of energy efficiency policies and measures into planning efforts as a critical component to advancing the objectives of the plan. Therefore, a project can be assessed for consistency with the Long-Term Energy Efficiency Strategic Plan by examining how its proposed development generally supports or conflicts with the strategies of the plan, such as green building standards and zero net energy readiness.

The proposed BESS facility aligns with the goals of the state's Long-Term Energy Efficiency Strategic Plan by supporting a more efficient and flexible energy infrastructure. By storing electricity during periods of low demand or high renewable generation and discharging it during peak demand, the proposed BESS facility helps reduce the reliance on fossil fuel generation sources and eases pressure on the electric grid. The proposed BESS facility also supports renewable energy integration by allowing cleaner energy and renewable energy produced by existing solar and wind resources to be stored and used efficiently. Therefore, the proposed Project would be considered consistent with the Long-Term Energy Efficiency Strategic Plan strategies. No impact would occur and no mitigation measures are necessary.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

VII. Geology and Soils

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map, issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
ii) Strong seismic ground shaking?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
iii) Seismic-related ground failure, including liquefaction?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
iv) Landslides?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
b) Result in substantial soil erosion or the loss of topsoil?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

3. ENVIRONMENTAL CHECKLIST

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
f) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

The analysis in this section is based partly on the following technical studies, which is included as Appendices D and E to this Initial Study:

- Geotechnical Engineering Report, Terracon, December 2023. (Appendix D)
- Revised Geotechnical Engineering Report, Terracon, February 2025. (Appendix E)

DISCUSSION

a) Would the proposed project directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:

i. **Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map, issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.**

The Alquist-Priolo Earthquake Fault Zoning Act was passed in 1972 to mitigate the hazard of surface faulting to structures for human occupancy. Surface rupture is the most easily avoided seismic hazard. Fault rupture generally occurs within 50 feet of an active fault line and is limited to the immediate area of the fault zone where the fault breaks along the surface. The main purpose of the Alquist-Priolo Earthquake Fault Zoning Act is to prevent construction of buildings used for human occupancy on the surface of active faults, in order to minimize the hazard of surface rupture of a fault to people and habitable buildings. Before cities and counties can permit development within Alquist-Priolo Earthquake Fault Zones, geologic investigations are required to show that the proposed development site is not threatened by surface rupture from future earthquakes.

According to the geotechnical engineering reports prepared for the proposed Project (Appendices D and E), the Project Site is not located in an Alquist-Priolo Earthquake Fault Zone. The nearest mapped active fault is the Whittier Fault approximately three miles south of the Project Site (Appendices D and E). Due to the distance to the active fault, the potential for surface rupture of a fault on-site is considered very low. Therefore, Project development would not subject people or structures to hazards arising from surface rupture of a known

3. ENVIRONMENTAL CHECKLIST

active fault. Impacts would be less than significant, and no mitigation measures are necessary.

ii. Strong seismic ground shaking?

The most significant geologic hazard to the design life of the proposed Project is the potential for moderate to strong ground shaking resulting from earthquakes generated on the faults in seismically active southern California. The type and magnitude of seismic hazards affecting the Project Site is dependent on the distance to causative faults, the intensity, and the magnitude of the seismic event.

As noted previously, the Whittier Fault is approximately three miles south of the Project Site (Appendices D and E). These faults, as well as others in the region, are considered capable of producing strong shaking at the Project Site, thereby exposing people or structures on the site to potential substantial adverse effects, including the risk of loss, injury, or death. The intensity of ground shaking on the Project Site would depend on the magnitude of the earthquake, distance to the epicenter, and the geology of the area between the epicenter and the Project Site.

Seismic shaking is a risk throughout southern California, and the Project Site is not at a greater risk of seismic activity or impacts than other sites in southern California. Additionally, the State regulates development in California through a variety of tools that reduce hazards from earthquakes and other geologic hazards. The Los Angeles County Building Code (LACBC; Title 26 of the Los Angeles County Code) and the California Building Code (CBC; California Code of Regulations, Title 24, Part 2) 2022 edition, adopted by reference in Title 15 (Buildings and Construction), Chapter 15.04 of the Industry Municipal Code, contain provisions to safeguard against major structural failures or loss of life caused by earthquakes or other geologic hazards. The CBC contains provisions for earthquake safety based on factors including occupancy type, the types of soil and rock on-site, and the strength of ground motion with specified probability of occurring at the site. Project development would be required to adhere to the provisions of the LACBC and CBC, which are enforced by the City during the building plan check and development review process. Compliance with the requirements of the LACBC and CBC for structural safety during a seismic event would reduce hazards from strong seismic ground shaking.

Furthermore, incorporation of the recommended design parameters from the Geotechnical Engineering Reports prepared for the proposed Project (Appendices D and E), such as parameters for shallow and deep foundations, lateral earth pressures, and pavement design, would also reduce hazards from strong seismic ground shaking. The City would impose the recommended design parameters as a condition of approval, and compliance would be ensured through the City's building plan check and development review process.

Compliance with the provisions of the LACBC and CBC and implementation of the recommended design parameters outlined in the geotechnical engineering reports would

3. ENVIRONMENTAL CHECKLIST

reduce impacts resulting from strong seismic ground shaking. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

iii. Seismic-related ground failure, including liquefaction?

Liquefaction is a phenomenon that occurs when soil undergoes a transformation from a solid state to a liquified condition. It refers to loose, saturated sand or silt deposits that behave as a liquid and lose their load-supporting capability when strongly shaken. Loose granular soils and silts that are saturated by relatively shallow groundwater are susceptible to liquefaction. When subjected to seismic ground shaking, affected soils lose strength during liquefaction and foundation failure can occur.

According to the geotechnical engineering reports prepared for the proposed Project (Appendices D and E), the Project Site has been mapped and is located within a liquefaction hazard zone as designated by the California Geological Survey (CGS). To evaluate the presence of liquefiable soils and determine the amount of settlement of saturated/unsaturated soils during seismic shaking, a liquefaction analysis was performed for the Project Site in accordance with the Los Angeles County guidelines. According to the geotechnical engineering reports prepared for the proposed Project (Appendices D and E), groundwater was observed at approximately 21 and 27 feet below grade surface (bgs). Historic high groundwater levels in the project area were recorded at approximately 12 to 14 feet bgs, which was the depth utilized for the liquefaction analysis. Based on the calculation results, the seismically induced settlement is estimated to be approximately one inch or less.

In response to the findings and conclusions of the liquefaction analysis conducted, Project Site grading, design, and construction would conform with the recommended design parameters of the geotechnical engineering reports prepared for the proposed Project. The City would impose the recommended design parameters as a condition of approval, and compliance would be ensured through the City's building plan check and development review process. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

iv. Landslides?

Landslides are the downslope movement of geologic materials. Slope failures in the form of landslides are common during strong seismic shaking in areas of steep hills.

The Project Site its surroundings are relatively flat and developed. There are no steep hills or bluffs on, adjacent to, or in the vicinity of the Project Site. The United States Geological Survey (USGS) landslide inventory tool illustrates that no landslides have occurred at or in the immediate vicinity of the Project Site, and they are not susceptible to possible landslides in the area (USGS 2024). Therefore, no impact related to landslides would occur and no mitigation measures are necessary.

3. ENVIRONMENTAL CHECKLIST

a) Would the proposed project result in substantial soil erosion or the loss of topsoil?

Erosion is the movement of rock and soil from place to place and is a natural process. Common agents of erosion in the project region include wind and flowing water. Significant erosion typically occurs on steep slopes where stormwater and high winds can carry topsoil down hillsides. Erosion can be increased greatly by earth-moving activities (e.g., excavation and grading) if erosion control measures are not used.

Construction Phase

Development at the Project Site involves site preparation, grading, and construction activities that would disturb soil and temporarily leave exposed soil on the ground surface. Common means of soil erosion from construction sites include water, wind, and being tracked off-site by vehicles. However, development on the Project Site is subject to local and state codes and requirements for erosion control and grading during construction. For example, Project development is required to comply with standard regulations, including South Coast AQMD Rules 402 (Nuisance) and 403 (Fugitive Dust), which would reduce construction erosion impacts. Rule 403 requires that fugitive dust be controlled with best available control measures so that the presence of such dust does not remain visible in the atmosphere beyond the property line of the emissions source. Rule 402 requires dust suppression techniques be implemented to prevent dust and soil erosion from creating a nuisance off site. For example, as outlined in Table 1 of Rule 403 (Best Available Control Measures), control measures to reduce erosion during grading and construction activities include stabilizing backfilling materials when not actively handling, stabilizing soils during clearing and grubbing activities, and stabilizing soils during and after cut-and-fill activities.

Additionally, the Construction General Permit (CGP) issued by the State Water Resources Control Board (SWRCB), effective July 17, 2012, regulates construction activities to minimize water pollution, including sediment risk from construction activities to receiving waters. Project development, which would occur on a site greater than one acre, would be subject to the NPDES permitting regulations, including the development and implementation of a Stormwater Pollution Prevention Plan (SWPPP), which is further discussed in Section X, *Hydrology and Water Quality*. The proposed Project's construction contractor would be required to prepare and implement a Stormwater Pollution Prevention Plan (SWPPP) and associated best management practices (BMP) in compliance with the CGP during grading and construction. For example, types of BMPs that are incorporated in SWPPPs and would help minimize impacts from soil erosion include:

- **Erosion controls.** Cover and/or bind soil surface, to prevent soil particles from being detached and transported by water or wind. Erosion control BMPs include mulch, soil binders, and mats.
- **Sediment controls.** Filter out soil particles that have been detached and transported in water. Sediment control BMPs include barriers and cleaning measures such as street sweeping.

3. ENVIRONMENTAL CHECKLIST

- **Tracking controls.** Tracking control BMPs minimize the tracking of soil off site by vehicles; for instance, stabilizing construction roadways and entrances/exits.

Adherence to the BMPs in the SWPPP and with local and state codes and requirements for erosion control and grading during construction would reduce, prevent, or minimize soil erosion from project-related grading and construction activities. Therefore, soil erosion impacts from Project-related grading and construction activities would be less than significant and no mitigation measures are necessary.

Operation Phase

The Project Site is relatively flat and is not adjacent to or in the vicinity of any waterways or any major slopes or bluffs. The Project Site would include landscaping along most of the perimeter of the Project Site, but would include ground cover, trees, and shrubs that would reduce potential erosion. Additionally, most of the Project Site would be developed with hard surfaces.

In accordance with the City's initial requirements for development projects, specifically Industry Municipal Code Section 13.16, Stormwater and Urban Runoff Pollution Control, a preliminary Hydrology Study and Stormwater Quality Management Plan was prepared for the Project Site (Appendix P). BMPs specified in the plan would help minimize sediment pollution of stormwater and include common area catch basin inspection; common area landscape management; sweeping of streets; and activity restrictions. BMPs are discussed further in Section X, *Hydrology and Water Quality*. Implementation of the BMPs would help ensure that soil erosion would not occur under the proposed Project's operation phase. BMP implementation would be ensured through the City's building plan check and development review process. Upon Project completion, the potential for soil erosion or the loss of topsoil would be expected to be extremely low.

Therefore, soil erosion impacts from the proposed Project's operation phase would be less than significant and no mitigation measures are necessary.

b) Would the proposed project be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?

Hazards from liquefaction are addressed above in Section VII.a.iii and landslide hazards are addressed above in Section VII.a.iv. As concluded in these sections, impacts would be less than significant, and no mitigation measures are necessary.

Lateral Spreading

Lateral spreading is a phenomenon that occurs in association with liquefaction and includes the movement of non-liquefied soil materials. As stated in Section X.a.iii, the Project Site is located in

3. ENVIRONMENTAL CHECKLIST

a liquefaction hazard zone. Project Site grading, design, and construction would conform with the recommended design parameters of the geotechnical engineering reports prepared for the proposed Project (Appendices D and E). The City would impose the recommended design parameters as a condition of approval, and compliance would be ensured through the City's building plan check and development review process. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

Ground Subsidence

The major cause of ground subsidence is the excessive withdrawal of groundwater. Soils with high silt or clay content are particularly susceptible to subsidence. The Project Site overlies the San Gabriel Valley Groundwater Basin, a large alluvial groundwater basin with storage in excess of ten million acre-feet. The basin has a long history of groundwater use for various uses dating back to the late 1800s. Based on a review of the US Geological Survey map, "Areas of Land Subsidence in California," the San Gabriel Valley Groundwater Basin is not in an area of subsidence. Although the California Department of Water Resources lists the basin with a high potential for future subsidence, no evidence of substantial subsidence has been observed (DWR 2014). The Main San Gabriel Basin Watermaster, the agency responsible for groundwater basin management, annually establishes a safe water yield for the next four years in order to prevent any permanent lowering of the land surface (MSGBW 2024).

Additionally, Project Site development would not substantially increase groundwater pumping in the basin, as there would be limited operational uses that consume water operating onsite. Therefore, Project Site development would not subject people or structures to substantial hazards arising from ground subsidence. Impacts would be less than significant, and no mitigation measures are necessary.

Collapsable Soils

Collapsible soils shrink upon being wetted and/or being subject to a load. Soils susceptible to hydro-collapse (or collapsible soils) are predominately sand, silty sand, and sandy silt held in a relatively loose structure by a temporary cementing agent. If the soil remains dry it generally maintains its structure, but the addition of water will greatly weaken the structure, and the soil experiences immediate collapse. This collapse can result in rapid soil settlement and potential damage to any improvements within the zone of influence of the collapsible soils. Fine-grained soils such as clays and silty clays are generally not considered susceptible to hydro-collapse.

Laboratory testing for hydro-collapse at the Project Site was performed per the American Society for Testing and Materials (ASTM) Test D1557 as a part of the geotechnical engineering reports prepared for the proposed Project (Appendices D and E). The testing found in Appendix D indicated that near surface soils tested have a maximum dry density of 123.8 pounds per cubic feet (pcf) and optimum water contents of 12.1 percent. Additionally, the testing found in

3. ENVIRONMENTAL CHECKLIST

Appendix E indicated that near surface soils tested have a maximum dry density of 114 poundspcf and optimum water contents of 16.5 percent. A consolidation test completed for both Appendices indicates that the clayey soils encountered at an approximate depth of 2.5 feet bgs have a negligible collapse/swell potential when saturated under normal footing loads of 2,000 psf.

Additionally, Project Site grading, design, and construction would conform with the design parameters of the geotechnical engineering report. The City would impose the recommended design parameters as a condition of approval, and compliance would be ensured through the City's building plan check and development review process.

Therefore, impacts would be less than significant, and no mitigation measures are necessary.

c) *Would the proposed project be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?*

Expansive soils shrink or swell as the moisture content decreases or increases; the shrinking or swelling can shift, crack, or break structures built on such soils. According to the Appendix D prepared for the proposed Project, expansive soils are present on the Project Site. These expansive soils have an expansion index value of approximately 37, which is considered a medium expansion potential. Project Site development would be required to incorporate the recommendations provided in the geotechnical exploration report, which would be imposed as a condition of approval, and adhere to the provisions of the CBC. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

d) *Would the proposed project have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?*

Development of the proposed BESS facility on the Project Site would not propose or require the construction or use of a septic tank or an alternative wastewater disposal system. Therefore, no impact would occur, and no mitigation measures are necessary.

e) *Would the proposed project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?*

Paleontological resources are commonly known as fossils, that is, the recognizable physical remains or evidence of past life forms found on earth in past geological periods, including bones, shells, leaves, tracks, burrows, and impressions.

As shown in Figure 3, *Aerial Photograph*, the Project Site is in an urbanized area of the City, and the Project Site is disturbed and developed with warehouse, manufacturing, and industrial uses

3. ENVIRONMENTAL CHECKLIST

and associated improvements. Given the highly disturbed and developed condition of the Project Site and its surroundings, the potential for development of the proposed Project to impact an unidentified paleontological resource is considered low. Additionally, there are no unique geological features on-site or adjacent to or surrounding the Project Site.

Ground-disturbing activities in deeper native sediments could unearth unique paleontological resources. The Project Site would include subsurface work during construction. The operational phase would not include any subsurface activities. While the possibility of finding archaeological resources is considered low due to the disturbed and developed nature of the Project Site, it is possible that fossils could be discovered during grading and earthwork activities. Unknown fossils encountered during excavation would have the potential to be unintentionally damaged.

Implementation of Mitigation Measure GEO-1, which outlines precautionary measures and action measures for an event resulting in the discovery of unknown paleontological resources, would ensure that impacts to unknown paleontological resources are less than significant.

Mitigation Measure GEO-1: In the event that fossils or fossil locality deposits are discovered during ground disturbing activities (e.g., trenching, soil removal), excavation within 100 feet of the fossil locality shall be temporarily halted until removal occurs. The contractor shall notify a qualified paleontologist to investigate its significance. If the fossil locality is determined to be significant by the qualified paleontologist, the paleontologist shall work with the project applicant and construction contractor to follow accepted professional standards, such as further testing for evaluation or data recovery, as necessary. The paleontologist shall notify the appropriate agencies to determine procedures that shall be followed before construction is allowed to resume at the location of the find. If the project applicant determines that avoidance is not feasible, the paleontologist shall prepare an excavation plan for mitigating the effect of the project based on the qualities that make the resource important.

3. ENVIRONMENTAL CHECKLIST

VIII. Greenhouse Gas Emissions

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

The analysis in this section is based partly on the following technical study, which is included as Appendix A to this Initial Study:

- Air Quality and Greenhouse Gas Emissions Report, TRC, September 2025.

DISCUSSION

a) *Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?*

Global climate change is not confined to a particular project area and is generally accepted as the consequence of global industrialization over the last 200 years. A typical project, even a very large one, does not generate enough greenhouse gas emissions on its own to influence global climate change significantly; hence, the issue of global climate change is, by definition, a cumulative environmental impact.

Construction and Decommissioning Emissions

According to Appendix A, the GHG emissions from the proposed Project construction and decommissioning would be temporary and minimal.¹ Construction emissions were evaluated using the California Emissions Estimator Model (CalEEMod) Version 2022.1.1.30. The South Coast AQMD recommends that construction emissions be amortized over a project's lifetime; therefore,

¹ Emissions from decommissioning at the end of the proposed Project's expected 35-year life cannot be reliably estimated given the likely advances in equipment, emissions controls, and energy. It is reasonably foreseeable that they will be no more than those for construction.

3. ENVIRONMENTAL CHECKLIST

the total construction GHG emissions were calculated, amortized over 35-year lifetime, and included in the emissions inventory to account for one-time GHG emissions from construction phase of the proposed Project.

The estimated total GHG emissions during construction and decommissioning of the proposed Project would be approximately 968 metric tons of carbon dioxide equivalent emissions (MTCO₂e). Estimated Project-generated construction and decommissioning emissions amortized over 35 years would be approximately 28 MTCO₂e per year (Appendix A). Therefore, impacts would be less than significant, and no mitigation measures are necessary.

Operational Emissions

Long-term reduction in regional GHG emissions from proposed Project operations is expected to more than offset the emissions during construction and decommissioning, resulting in an overall net benefit in terms of GHG emission reduction. Even with decommissioning emissions included, the proposed Project's annual amortized GHG impact of 28 MTCO₂e/yr would be less than 1 percent of the current interim South Coast AQMD GHG significance threshold of 3,000 MTCO₂e/yr (Appendix A).

Additionally, the proposed Project would provide the City and State of California with a reliable BESS facility designed to receive, store, and discharge electricity from the electric grid managed by the California Independent System Operator (CAISO), including renewable energy produced by existing solar and wind resources in the region. The proposed BESS facility is intended to efficiently capture and manage renewable energy, using a proven and established energy storage technology that is efficient, has low maintenance requirements, and is recyclable. In turn, this would help reduce GHG emissions.

Overall, development and operation of the proposed Project would not generate annual GHG emissions that exceed the South Coast AQMD GHG bright-line threshold of 3,000 MTCO₂e per year for development projects (South Coast AQMD 2010). Therefore, the proposed Project's cumulative contribution to GHG emissions would be less than significant and no mitigation measures are necessary.

b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases??

The following evaluates consistency of the proposed Project to the CARB's 2022 Scoping Plan and SCAG's RTP/SCS.

CARB Scoping Plan

The latest 2022 Climate Change Scoping Plan outlines the State's strategies to reduce GHG emissions in accordance with the targets established under AB 32, SB 32, and AB 1279 (CARB

3. ENVIRONMENTAL CHECKLIST

2022). The Scoping Plan is applicable to State agencies and is not directly applicable to cities/counties and individual projects. However, new regulations adopted by the state agencies outlined in the Scoping Plan result in GHG emissions reductions at the local level. As a result, local jurisdictions benefit from reductions in transportation emissions rates, increases in water efficiency in the building and landscape codes, and other statewide actions that affect a local jurisdiction's emissions inventory from the top down. Statewide strategies to reduce GHG emissions include the Low Carbon Fuel Standard (LCFS) and changes in the corporate average fuel economy standards (e.g., Pavley I and Pavley California Advanced Clean Cars program).

The proposed Project's GHG emissions would be reduced through compliance with the programs and regulations identified by the Scoping Plan and implemented by state, regional, and local agencies to achieve the statewide GHG reduction goals of AB 32, SB 32, and AB 1279. Specifically, the proposed BESS facility is intended to efficiently capture and manage renewable energy. By storing excess electricity generated from solar and wind resources and discharging it during periods of high demand or low renewable output, BESS helps balance the grid and reduce reliance on fossil-fuel-powered plants. The proposed BESS facility would also support grid reliability and contribute to California's carbon neutrality goal aligned with CARB 2022 Scoping Plan. Furthermore, the proposed Project is expected to result in an overall net benefit in terms of GHG emission reductions by supporting zero emission power generation technology and providing storage capacity for intermittent renewable energy (Appendix A). Thus, the proposed Project would not conflict with the strategies identified to implement the CARB 2022 Scoping Plan. Impacts would be less than significant, and no mitigation measures are necessary.

SCAG's Regional Transportation Plan/Sustainable Communities Strategy

Connect SoCal is a long-term plan for Southern California region that details the development, integrated management and operation of transportation systems and facilities that will function as an intermodal transportation network for the SCAG metropolitan planning area (SCAG 2024). This plan outlines a forecasted development pattern that demonstrates how the region can sustainably accommodate needed housing and job centers with multimodal mobility options. The overarching vision is to expand alternatives to driving, advance the transition to clean-transportation technologies, promote integrated and safe transit networks, and foster transit-oriented development in compact and mixed-use developments (SCAG 2024).

In addition, Connect SoCal is supported by a combination of transportation and land use strategies that outline how the region can achieve California's GHG-emission-reduction goals and federal Clean Air Act requirements. The projected regional development, when integrated with the proposed regional transportation network in Connect SoCal, would reduce per-capita GHG emissions related to vehicular travel and achieve the GHG reduction per capita targets for the SCAG region. The Connect SoCal Plan does not require that local general plans, specific plans, or zoning be consistent with the SCS, but provides incentives for consistency to governments and developers.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Based on the traffic study, the proposed Project would have up to two employees on-site daily and require infrequent maintenance vehicle trips, which will result in negligible impacts from worker trips as the proposed Project is designed for remote operation. As further described in Section XVII, *Transportation*, worker and vendor trips during construction would be temporary and operation of the proposed BESS facility would result in negligible vehicle trips. Therefore, the proposed Project screens out of the vehicle miles traveled (VMT) analysis and would not result in a VMT impact. Overall, the proposed Project would not interfere with SCAG's ability to implement the regional strategies in Connect SoCal. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

IX. Hazards and Hazardous Materials

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code § 65962.5 and, as a result, would it create a significant hazard to the public or the environment?	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
f) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
g) Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

The analysis in this section is based partly on the following technical studies, which are included as Appendices F through O to this Initial Study.

- Phase I Environmental Site Assessment – 16207 Gale Avenue 16207 and 16209 Gale Avenue, Terracon, January 27, 2025. (Appendix F)
- Phase I Environmental Site Assessment – 16233 Gale Avenue 16233 and 16235 Gale Avenue, Terracon, January 27, 2025. (Appendix G)
- Phase I Environmental Site Assessment – 16253 – 16293 Gale Avenue, Terracon, August 23, 2024. (Appendix H)
- Limited Site Investigation – 16207 Gale Avenue 16207 and 16209 Gale Avenue, Terracon, March 26, 2025. (Appendix I)
- Limited Site Investigation – 16233 Gale Avenue 16233 and 16235 Gale Avenue, Terracon, March 26, 2025. (Appendix J)
- Revised Soil and Groundwater Management Plan, TRC, September 2025. (Appendix K)
- Hazardous Materials and Safety Memorandum, TRC, February 2025. (Appendix L)

3. ENVIRONMENTAL CHECKLIST

- Plume Study, Hazard Dynamics, August 14, 2025. (Appendix M)
- EMF Study Report, Quanta Technology, August 14, 2025. (Appendix N)
- Emergency Air Toxics Analysis, PlaceWorks, September 17, 2025. (Appendix O)

DISCUSSION

a) Would the proposed project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

The term “hazardous material” can be defined in different ways. For purposes of this environmental document, the definition of “hazardous material” is the one outlined in the California Health and Safety Code, Section 25501, summarized below:

Hazardous materials that, because of their quantity, concentration, or physical or chemical characteristics, pose a significant present or potential hazard to human health and safety or to the environment if released into the workplace or the environment. Hazardous materials include, but are not limited to, hazardous substances, hazardous waste, and any material that a handler or the unified program agency has a reasonable basis for believing that it would be injurious to the health and safety of persons or harmful to the environment if released into the workplace or the environment.

“Hazardous waste” is a subset of hazardous materials, and the definition is essentially the same as in the California Health and Safety Code, Section 25117, and in the California Code of Regulations, Title 22, Section 66261.2:

Hazardous wastes are those that, because of their quantity, concentration, or physical, chemical, or infectious characteristics, may either cause, or significantly contribute to an increase in mortality or an increase in serious illness, or pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, disposed of, or otherwise managed.

Hazardous materials can be categorized as hazardous nonradioactive chemical materials, radioactive materials, and biohazardous materials (infectious agents such as microorganisms, bacteria, molds, parasites, viruses, and medical waste).

Exposure of the public or the environment to hazardous materials could occur through but not limited to the following means: improper handling or use of hazardous materials or waste, particularly by untrained personnel; transportation accident; environmentally unsound disposal methods; and/or fire, explosion, or other emergencies. The severity of potential effects varies

3. ENVIRONMENTAL CHECKLIST

with the activity conducted, the concentration and type of hazardous material or wastes present, and the proximity of sensitive receptors.

The Project Site is developed with warehouse, manufacturing, and industrial uses. Other site features include surface parking areas; outdoor storage and loading/unloading areas; driveways that connect to the internal parking and circulation improvements; and various hardscape and landscape improvements. The Project Site is almost entirely covered by impervious surfaces (pavement, buildings, and loading docks). An SCE overhead electric distribution line currently passes through the eastern portion of the site in a generally north-south direction. A segment of another SCE overhead distribution line is in the western portion of the site. The Project Site is surrounded by a mix of uses, including industrial and warehouse uses to the north and west, the SCE Walnut Substation to the east, and residential uses to the south beyond Gale Avenue in the unincorporated Los Angeles County community of Hacienda Heights (see Figure 3, *Aerial View*).

Construction Activities

Project-related construction activities would involve the use of hazardous materials including cleansers and degreasers; fluids used in routine maintenance and operation of construction equipment, such as oil and lubricants; fertilizers; pesticides; and architectural coatings including paints. Additionally, petroleum such as diesel or gasoline may be stored onsite during construction to fuel construction equipment though it is not anticipated to be stored onsite during the operation of the site. However, the materials used would not be in such quantities or stored in such a manner as to pose a significant safety hazard. These activities would also be short-term or one time in nature and would cease upon completion of the proposed Project's construction phase.

The use, storage, transport, and disposal of construction-related hazardous materials would be required to conform to federal, state, and local requirements as set forth by the US Environmental Protection Agency, Department of Toxic Substances Control (DTSC), California Occupational Safety and Health Administration (Cal/OSHA), Caltrans, Resource Conservation and Recovery Act, and Los Angeles County Fire Department (LACoFD)(the Certified Unified Program Agency for Los Angeles County), and the US Department of Transportation Lithium Battery Guide for Shippers. The US Department of Transportation Lithium Battery Guide for Shippers assist shippers to safely package lithium cells and batteries for transport by all modes according to the latest (May 10, 2024; HM-215Q) regulatory requirements. Compliance with applicable laws and regulations governing the use, storage, transportation, and disposal of hazardous materials would ensure that all potentially hazardous materials are used and handled in an appropriate manner and would minimize the potential for safety impacts. For example, all spills or leakage of petroleum products during construction activities are required to be immediately contained, the hazardous material identified, and the material remediated in compliance with applicable state and local regulations for the cleanup and disposal of that contaminant. All contaminated waste would be

3. ENVIRONMENTAL CHECKLIST

required to be collected and disposed of at an appropriately licensed disposal or treatment facility.

Additionally, because construction would disturb more than one acre, the proposed Project will be required to apply for and comply with the State General Permit for stormwater discharges from construction sites. For coverage under the permit, the proposed Project would need to submit a Storm Water Pollution Prevention Plan (SWPPP) with best management practices to be implemented to prevent stormwater pollution. Construction best management practices include storage and use of hazardous materials under safeguards to prevent releases to soil or water.

The proposed Project would also include the construction of a gen-tie line that would connect the Project Site to the existing SCE Substation. Construction of the gen-tie line would include typical hazardous materials found during a construction phase, which is described above. Additionally, the materials used would not pose a significant safety hazard and would be short-term or one time in nature and would cease upon completion of the proposed Project's construction phase. Furthermore, the existing SCE overhead power lines that abut the entire stretch of eastern Project Site boundary would not be affected as a result of Project implementation.

Site Reconnaissance

As part of the Phase I ESAs, two separate site reconnaissance occurred with one occurring on August 21, 2024, and the other on October 28, 2024. Per the Phase I ESAs, there was evidence of the following occurring on the Project Site:

- Air Compressors;
- Ventilation hoods and/or incinerators;
- Heating and/or cooling systems;
- Other processes or equipment;
- Aboveground storage tanks;
- Drums, barrels, and/or containers \geq 5 gallons;
- Sumps, cisterns, French drains, catch basins, and/or dry wells;
- Interior floor drains;
- Transformers and/or capacitors;
- Stained pavement or similar surface;
- Trash, debris, and/or other waste materials;
- Dumping or disposal areas;
- Soil Borings.

3. ENVIRONMENTAL CHECKLIST

Though these site characteristics did occur during both site reconnaissance, none of the site characteristics represented a REC.

Phase I ESAs and LSIs

Three Phase I Environmental Site Assessment Reports (Phase I ESAs) and two Limited Site Investigations (LSIs) were prepared for the proposed Project. These Phase I ESAs involved a search of local, state, and federal databases for known hazardous or contaminated material sites, a site reconnaissance, a review of historical aerial photographs, and research and interviews with representatives of the public, property ownership, site manager, and regulatory agencies (Appendices F through H). The purpose of the Phase I ESAs was to evaluate the likelihood that hazardous materials may be present in soil beneath the Project Site as a result of on- or off-site activities.

The objective of the LSIs was to assess the presence of chemicals commonly associated with RECs on the Project Site at concentrations above laboratory reporting and/or method detection limits in the on-site soil, and soil gas (Appendices I and J).

The Phase I ESAs were performed in conformance with the scope and limitations of the American Society for Testing and Materials (ASTM) E1527-21 standards. The ASTM E1527-21 Standard defines a Recognized Environmental Concern (REC) in part as “the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment.” The Phase I ESAs and LSIs concluded that there is evidence of four RECs on the Project Site.

Historical records show that the site remained undeveloped or in agricultural use from as early as 1894 until 1962. Although the site itself was used for agriculture from at least 1928 to 1964, no evidence of pesticide or herbicide misuse was observed, and redevelopment in 1962 likely mixed shallow soils. Because the site is now mostly covered by buildings and pavement, the historical agricultural use does not represent a REC.

In approximately 1962, the site was developed with the existing industrial warehouse, located in the northern portion of the Project Site and abutting Ward Way, and a parking lot. In 1970, the site was occupied by a stainless-steel commercial appliance manufacturer, which operated for nearly 39 years until 2009. In 1990, an auxiliary roofed area was added to the Project Site, and the site was also home to a stainless-steel sheet metal manufacturer. From 2009 to 2020, a machine shop operated on-site, overlapping with an auto and tent parts warehouse that occupied the property from 2009 to 2022.

Based on the longevity of industrial operations associated with a stainless-steel commercial appliance manufacturer (approximately 39 years), lack of information concerning waste streams

3. ENVIRONMENTAL CHECKLIST

for the site, irregular asphalt patching in the pavement areas during the site reconnaissance, and the likely use of petroleum and solvents/chemicals as part of the historical operations, the former manufacturing operations represents a REC to the site.

Based on the longevity of the Metal Cutting Service operations (approximately 49 years), the likely use of solvents/chemicals as part of the current and historical operations and the proximity and relative topographic up-gradient position to the site, the Metal Cutting Service represents a REC to the site.

The surrounding area also transitioned from agricultural land to developed uses over time. By 1952, a homestead was established on the adjoining southern and western properties, and by the mid-1960s, agricultural uses were replaced with warehouses, parking lots, and Ward Way. The Project Site was developed with industrial warehouses and parking lots by the early 1980s, while the eastern adjoining properties transitioned from a Christmas tree farm in the 1970s to multi-tenant industrial uses in the 1990s.

As part of the proposed Project, site preparation would include grading and excavation which has the potential to encounter impacted soils and groundwater as described above. The proposed Project has the potential to include constituents of concern (COCs) that could include total petroleum hydrocarbons (TPH) and volatile organic compounds (VOCs). If excavated, impacted soils may result in the generation of waste that would require management and additional precautions during construction. The groundwater in the Project Site vicinity is anticipated to be encountered at depths ranging from approximately 21 to 26 feet below ground (fbg). Based on the maximum depth of the proposed excavation activities (up to 10 fbg), groundwater is not anticipated to be encountered at the Project Site during routine earthwork. However, geotechnical exploration soil borings and/or deep foundations for the interconnection support poles have the potential to encounter groundwater. The proposed Project would implement the Revised Soil and Groundwater Management Plan (SGMP), which provides best management practices (BMPs) for use in the event impacted soil or groundwater is encountered during construction of the proposed Project (Appendix K). BMPs, which would be required as conditions of approval for the proposed Project include (APM 1):

- Requiring the General Contractor (GC) and its subcontractors to instruct and train workers of the potential for encountering soil contaminated by past activities and to implement measures consistent with the SGMP. If impacted soil or unexpected underground features (e.g., storage tanks, septic pits, hydraulic lifts, clarifiers) suspected of containing hazardous substances are discovered during excavation, the Project owner must be notified immediately. Signs such as odors, staining, or debris require the Foreman to notify the Project owner, who must then seek guidance from a qualified environmental professional on further testing or remediation.

3. ENVIRONMENTAL CHECKLIST

- Implementing Health and Safety Plans (HASPs) during all phases of work. The HASP must be prepared by a qualified professional in compliance with OSHA and Cal-OSHA HAZWOPER standards and outline administrative and engineering controls and personal protective equipment (PPE) to protect workers throughout all project stages. The GC, environmental consultant, and subcontractor HASPs and BMPs should include hazard assessment and mitigation measures to eliminate or minimize potential exposure pathways including inhalation of dust and vapors; dermal contact with impacted soil; and dermal contact or ingestion of groundwater.
- The environmental consultant shall be onsite when substantive grading or excavations are occurring in soils not previously disturbed by project construction. The GC and environmental consultant shall implement procedures and practices to ensure that their respective workers are trained to be continually observant for potentially impacted soils. The Project owner, or the GC and environmental consultant at the Project owner's direction, shall provide for active, periodic field oversight including:
 - Screening exposed and excavated soils:
 - Using visual indicators and instrumentation (e.g., calibrated photoionization detector) to identify potentially TPH- and VOC-impacted soils.
 - Based on visual indicators or instrumentation, potential collection of select soil samples for laboratory analysis for contaminants of concern (COCs) including TPH, VOCs, and any additional profile testing that may be required by waste disposal facilities, using EPA approved methods. At a minimum, this testing would include profiling removed soil waste that will be transported for off-site disposal.
 - Excavation, separation, and documentation of potentially impacted soils.
 - If appropriate, collection of select samples for laboratory analysis:
 - Soils remaining where impacted soils have been removed.
 - Impacted soils designated for reuse, additional sampling, and/or for off-site disposal.
 - Impacted soils designated for reuse, additional sampling, and/or for off-site disposal.
- If impacted soil is encountered, it should be removed and segregated in a manner to minimize over-excavation or mixing with clean soil. Impacted soils should be removed from the Project Site frequently to minimize the potential for contact between stormwater and any impacted soils identified during excavation. Excavation in areas where impacted soil is encountered should be protected from stormwater run-on by clean soil berms or other diversionary features to direct water away from any exposed impacted soils. Other BMP measures such as covering impacted soils with plastic shall be implemented to prevent or minimize stormwater contact with impacted soils.

3. ENVIRONMENTAL CHECKLIST

- If impacted soil is encountered, it should be removed and segregated in a manner to minimize over-excavation or mixing with clean soil.
- Impacted soils should be removed from the Project Site frequently to minimize the potential for contact between stormwater and any impacted soils identified during excavation.
- Excavation in areas where impacted soil is encountered should be protected from stormwater run-on by clean soil berms or other diversionary features to direct water away from any exposed impacted soils.
- The GC and subcontractors should be aware of the regulatory implications of improper management or disposal of contaminated soils. If changed conditions are encountered (i.e., petroleum hydrocarbons, USTs, or obviously impacted soils), the excavated impacted soil shall be stockpiled separately on plastic sheeting under the direction of the environmental consultant, covered with plastic sheeting, and secured with fiber rolls or equivalent until they can be properly evaluated. Workers in physical contact with obviously impacted environmental media should have OSHA HAZWOPER training consistent with 29 CFR 1910.120.

If chemical odors, stained or saturated soils, a sheen on water collected in excavations, detected concentrations of COCs from laboratory analysis of select soil samples, or other evidence of potential chemical contamination is encountered during excavation activities, work in the area of the discovery shall cease immediately and the Project owner shall be notified.

- If impacted soils are identified, the impacted soil shall be characterized as needed to determine which of the waste categories it fits in. If off-site disposal is required characterization will also be required by the receiving facility. Based on historical knowledge of the Site and vicinity, if impacted soils are encountered, typical waste profiling parameters may include TPH carbon chain by EPA Method 8015M and VOCs by EPA Method 8260B. If impacted soil is excavated, proper classification is the responsibility of the Generator, which will be the Project owner unless otherwise dictated by contract or state law. All impacted soil characterization and results as well as manifesting shall be coordinated with the Project owner.

Only an authorized transporter can transport soils offsite. Transport and shipping documentation shall be coordinated with the Project owner. Receiving facilities must be licensed to receive the types and concentrations of COCs in the soil shipment.

- If stormwater collects in any excavation during construction, it should be visually inspected for evidence of sheen or other indication of Contaminants of Concern (COC) presence such as visually impacted soil in the excavation wall. If groundwater or storm water that has come in contact with potentially impacted soils is to be removed from an excavation, the water shall

3. ENVIRONMENTAL CHECKLIST

be managed as potentially contaminated and evaluated through chemical analysis prior to discharge and/or off-site disposal. Samples shall be collected by a qualified person and characterization shall be coordinated with the GC.

- Produced and/or captured groundwater or stormwater that has contacted impacted soils shall be containerized in suitable portable aboveground storage tanks (ASTs) compatible with the potential COCs and properly secured to prevent unsafe exposure, contact with stormwater, or discharge to the surface, storm drains, or waterways.
- Dust control measures will be implemented in accordance with SCAQMD requirements.
- Project construction will require coverage under State Water Resources Control Board Construction General Permit Order 2022-0057-DWQ for storm water discharges from construction sites.
- Document excavation activities and receipt of any necessary laboratory analytical results and waste manifest documentation.

Demolition Activities

Construction would start with the removal of existing buildings, foundations, asphalt, concrete, and landscaping on the Project Site. After all hazardous materials and universal wastes are removed from the buildings and fuel and water and power sources have been safely disconnected, the buildings, foundations, asphalt, and concrete would be demolished and the debris hauled off-site using common construction equipment such as excavators, bulldozers, and haul trucks. Most demolition debris would be metal and concrete rubble that would be sent to a recycler following City and State requirements.

Given the age of the buildings currently on the Project Site (prior to 1980), they have the potential to contain asbestos containing materials (ACMs) and lead based paints. Impacts related to lead concentrations would not be significant because the project developer would be required to follow all applicable federal and state regulations regarding lead concentrations. During demolition activities, all building materials containing lead-based paint would be required to be removed in accordance with Cal/OSHA standards contained in Title 8 of the California Code of Regulations (CCR), Section 1532.1, including employee training, employee air monitoring, and dust control. Any debris or soil containing lead-based paint or coatings would be required to be disposed of at landfills that meet acceptance criteria for the type of lead being disposed.

In addition, the proposed Project would be required to follow all applicable federal, state, and local regulations, standards, and codes governing abatement, transport, and disposal of ACMs. These would include the following:

3. ENVIRONMENTAL CHECKLIST

- Work performed during any activities (i.e., drilling, cutting, sanding, scraping) that disturb identified ACM materials must be done in compliance with the most recent edition of all applicable federal, state, and local regulations, standards, and codes governing abatement, transport, and disposal of ACMs.
- Materials encountered in the buildings that are not part of the HMS must be properly sampled for the content of asbestos or assumed to be asbestos containing prior to any disturbance.
- Prior to activities that will disturb identified or assumed ACMs, a Cal/OSHA registered and California licensed asbestos contractor must be utilized for abatement of ACM that will be impacted and that all abatement operations be conducted under the direction of a California Certified Asbestos Consultant.
- Removal of ≥ 100 square feet of identified or suspected ACM requires a 14-calendar day written notification to the South Coast AQMD, notification to Cal/OSHA in writing at least 24 hours prior to the initiation of such activities and obtaining the appropriate LACoFD permit.
- Notification to employees and contractors working within the building should be made in accordance with the California Health and Safety Code, Section 25915 et. seq. and Proposition 65.
- All potentially friable ACMs shall be removed in accordance with National Emission Standards for Air Pollution guidelines prior to demolition or renovation activities that may disturb ACMs. All demolition activities shall be undertaken in accordance with Cal/OSHA standards contained in Title 8, CCR, Section 1529, to protect workers from asbestos exposure.

Project Operation

The proposed Project would be designed for remote operation and would also be staffed with up to two employees on-site daily, with the ability to charge and discharge electricity around the clock. Routine office operations would not generate significant litter or waste streams, aside from small amounts of packaging materials, shipping waste, and household-type refuse from maintenance activities. Operation of lithium iron phosphate (LFP) energy storage facilities requires few hazardous materials. Hazardous materials expected to be needed include mineral oil, coolant, and refrigerant. In addition, the backup generator would have a fuel tank and lubricating oil. LFP also contains hazardous materials and spent or damaged batteries can fall under hazardous or universal waste management regulations. Spent batteries would be returned to the manufacturer for recycling, while other replaced equipment would be recycled or disposed of in compliance with state regulations.

The proposed Project may generate small quantities of hazardous waste, including used rags, aerosol cans, and electronic waste, that would be subject to regulation under CCR Title 22,

3. ENVIRONMENTAL CHECKLIST

Division 4.5 and would be expected to meet the criteria for Small Quantity Generator. State regulations in CCR Title 22 Division 4.5 require facilities generating hazardous waste to have preparedness and prevention measures in place for emergency response minimizing the potential for a release of hazardous waste and to support prompt and appropriate response in the event of an incident including internal communications or alarm systems, fire control, spill control and decontamination equipment, fire suppression water systems, and posted emergency information. Hazardous waste generators are required to ensure that employees are trained and knowledgeable on emergency procedures and to attempt to make arrangement with local emergency responder appropriate for the wastes managed (Appendix L).

Additionally, oil-filled transformers will be subject to Code of Federal Regulations Title 40 Part 112 and California Health and Safety Code Chapter 6.67 requirements for development and implementation of a Spill Prevention Control and Countermeasures Plan (SPCC) including secondary containment for aboveground bulk oil storage containers, routine inspections for oil containment integrity and ensuring collected stormwater is oil-free before it is released, and contingency planning for prompt and appropriate response to a potential release. SPCC requirements would also apply to a back-up generator fuel tank and if a temporary bulk fuel tank is provided onsite during construction. The requirements in these regulations are designed to minimize the potential for an oil spill from equipment to impact waters.

Although routine storage of hazardous materials is not anticipated, certain equipment would contain potentially hazardous substances such as mineral oil in transformers, refrigerant and pressurized gases in cooling systems, and lithium-ion batteries. Additional materials with pressure-release hazards, such as nitrogen cylinders or fire suppression agents, may also be included in the final design. All hazardous materials meeting California reporting thresholds would be documented in the state's Environmental Reporting System. The proposed Project would also be required to obtain permits from the Los Angeles County Fire Department (LACoFD), submit a hazardous materials disclosure form, and comply with all applicable regulations through the preparation of required plans, including a Hazardous Materials Business Plan, SPCC Plan, and emergency response plans.

The proposed Project would also adhere to Section 311 in the Federal Emergency Planning and Community Right-to-Know Act (EPCRA) which requires facilities that have hazardous chemicals to report the presence of such chemicals onsite to the State and local emergency planning committees (LEPC) if the chemicals are present above threshold quantities. The proposed Project would also adhere to the Federal and State OSHA regulations that require all employees to be informed and trained on hazardous materials in their work area at the time of their assignments.

During operations, the proposed Project would need to implement and maintain engineering and other best management practices required under the Los Angeles County Municipal Separate Storm Sewer System (MS4) permit. Operations requirements for the proposed Project also

3. ENVIRONMENTAL CHECKLIST

include best management practices for prevention of stormwater pollution. These measures include proper waste management to prevent contact with runoff, and storage and handling hazardous materials following measures to prevent spills or other releases that could be contacted by precipitation or runoff.

Soil Gas Sampling

On February 17, 2025, four soil borings were completed at a maximum depth of 20 feet below ground to collect soil samples to study the above-mentioned RECs on the Project Site (Appendices I and J). On February 17, 2024, 2 single nested soil gas probes and 2 dual-nested soil gas probes were installed adjacent to the existing building on the Project Site for the collection of soil gas samples. The samples were analyzed using standard Environmental Protection Agency (EPA) methods.

The analytical data was screened using the current residential and commercial Environmental Screening Levels (ESLs) published by San Francisco Bay Regional Water Quality Control Board. For analytes without an applicable ESL, EPA's Vapor Intrusion Screening Levels (VISLs) were used to supplement the ESLs for the soil gas samples, as applicable and necessary. The detection of an analyte at a concentration above a screening level does not necessarily indicate an adverse impact to human health or the environment; however, an exceedance of a screening level may indicate that additional investigation is warranted.

The soil analytical results indicate VOCs, TPH gasoline range organics (TPH-GRO), diesel range organics (TPH-DRO), and motor oil range organics (TPH-MORO) were not detected above laboratory reporting limits (RLs). The soil analytical results indicated metals were not detected above the specified laboratory RLs with the exception of arsenic, barium, chromium, cobalt, copper, lead, nickel, vanadium, and zinc. The concentrations of the listed metals are within the range of naturally occurring "background" concentrations, and/or were below residential, commercial, and construction worker ESLs except for Arsenic, which was detected in one sample.

Soil gas sample analytical results indicate that several VOCs were detected above their respective laboratory method detection limits (MDLs). The soil gas sample analytical results were compared to the ESLs, which revealed that concentrations of 1,1,2,2-Tetrachloroethane, 1,3-Butadiene, Benzene, tetrachloroethane (PCE), and trichloroethene (TCE) were detected in one or more samples above their respective ESLs for residential or commercial land use.

The proposed Project would include the construction of an occupied building on the Project Site. As a result of the soil gas sample analytical results, a vapor intrusion mitigation system (VIMS) would be implemented with the planned future building construction to address the documented soil gas concentrations detected (APM 2, which would be included as a condition of approval for the proposed Project). Vapor intrusion mitigation methods are classified as either "passive" or "active." Passive methods prevent the entry of chemical vapors into the building, while active

3. ENVIRONMENTAL CHECKLIST

methods change the pressure difference between the sub-slab and the inside of the building to keep vapors out. Passive vapor intrusion methods could include the following:

- Sealing openings involves filling in cracks in the floor slab and gaps around pipes and utility lines found in basement walls. Concrete can be poured over unfinished dirt floors.
- Installing vapor barriers involves placing sheets of “geomembrane” or strong plastic beneath a building to prevent vapor entry. Vapor barriers are best installed during building construction but can be installed in existing buildings that have crawl spaces.
- Passive venting involves installing a venting layer beneath a building. Wind or the build-up of vapors causes vapors to move through the venting layer toward the sides of the building where it is vented outdoors. A venting layer can be installed prior to building construction as well as within existing buildings. It is usually used with a vapor barrier.

Active vapor intrusion methods could include the following:

- Sub-slab depressurization involves connecting a blower (an electric fan) to a small suction pit dug into the slab in order to vent vapors outdoors.
- Building over-pressurization involves adjusting the building’s heating, ventilation, and air-conditioning system to increase the pressure indoors relative to the sub-slab area. This method is typically used for office buildings and other large structures (EPA 2012).

Design of this VIMS would be included within the proposed Project’s building permit submittal, as is typical for this type of system, and would be part of the proposed Project design.

Gen-Tie Line EMF Study

The Gen-Tie Line EMF study (Appendix N) evaluated the electric field and magnetic field of the proposed Project. The proposed Project would include a single-circuit 230 kV transmission line extending approximately 72 feet. To ensure conservative and realistic modeling, the study adopted the lowest vertical conductor clearance—68 feet—as the reference height for the analysis. This approach aligns with industry best practices for worst-case exposure modeling under adverse weather conditions.

The methodology for the study of each aspect is as follows:

- **Electric Field (EF).** The intensity of the EF is measured approximately 6.5 feet above ground. According to the Institute of Electrical and Electronics Engineers (IEEE) Standard C95.6, under normal load conditions, for the public, the maximum permissible exposure (MPE) to electric fields is 10 kV/m, and MPE outside the line right of way (ROW) is 5 kV/m.

3. ENVIRONMENTAL CHECKLIST

- **Magnetic Field (MF).** The intensity of the MF is measured 6.5 feet above the ground. Based on the technical research, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has made a series of recommendations for limiting EMF exposure to human beings: public exposure to magnetic fields should be limited to 2,000 mG (200 mT) (ICNIRP 2010). The International Commission on Non-ionizing Radiation Protection (INIRC-IRPA) recommends a public exposure MF guideline of 1 gauss.

The EMF study concluded that the gen-tie line emitted a maximum of just over 0.9 kV/m at about 20 feet from the gen-tie line. As stated above, the MPE to electric fields is 10 kV/m with the proposed gen-tie line below the MPE. The magnetic field exposure measured at 0.03 G or 30mG at the center of the gen-tie line. Public exposure to magnetic fields should be limited to 1 G or 2,000 mG. The proposed Project's gen-tie line would be below the maximum magnetic field exposure.

Emergency Action Plan

Pursuant to the provisions of Section 761.3(g)(1) of the Public Utilities Code, battery energy storage facilities are required to have an emergency response and an emergency action plan (EAP). As stated in APM-3, the project applicant would prepare an EAP for submittal to and approval by OSHA in accordance with the provisions of Standard 1910.38 (Emergency action plans) of Part 1910 (Occupational Safety and Health Standards). An EAP is a written document outlining employee and employer actions for workplace emergencies like fires, chemical releases, or natural disasters, requiring procedures for reporting, evacuation, accounting for personnel, and performing rescue/medical duties.

The EAP covers any potential onsite chemical spills, fires, and earthquakes involving hazardous materials such as diesel fuel, gasoline, and motor oil for vehicles and LFP batteries. In the event of an accidental release of hazardous materials, various notifications would be made. These include notifying internal and onsite personnel, emergency responders including LACoFD, neighboring facilities that may be affected by an onsite release, and the local Certified Unified Program Agency (CUPA) and the State Warning Center, if needed. Additionally, prior to resuming operation of the site use, the local CUPA and LACoFD are required to be notified that the Project Site is in compliance with the requirements for storage and disposal of recovered waste, contaminated soil or surface water, or any other material that results from an explosion, fire, or release at the facility and ensure that no material that is incompatible with the released material is transferred, stored, or disposed of in areas of the facility affected by the incident until clean up procedures are completed. All agencies responsible for emergency response to the Project Site and surrounding area are required to be included in the EAP.

The EAP also provides guidance for evacuation procedures if there is a need to evacuate the Project Site. These procedures include installing an onsite alarm system(s) that would broadcast

3. ENVIRONMENTAL CHECKLIST

a warning siren or horn to alert employees to evacuate, utilizing the established muster points near the facility entrances and ensuring no workers or visitors leave the site without checking in with the emergency coordinator, and posting the established evacuation routes visibly and clearly for employees.

Additionally, the lithium-ion batteries, which contain hazardous materials, would be provided on racks within battery enclosures. As a condition of approval, the proposed Project would be properly segregated from other surrounding industrial uses and would include all proper safeguards, including a reinforced 10-foot-high CMU block wall to be built along southern boundary of the Project Site. Additionally, per the conditions of approval, none of the battery enclosures would be permitted to be within 25 feet of any property line, and the battery enclosures would be required to be equipped with internal, failsafe heat and gas detection and alarm systems, which shall provide audio and visual early warnings of increases in heat or gas in any battery enclosure to a third-party reporting station that actively monitors for such warnings on a 24/7/365 basis. Furthermore, whenever any of the batteries fail, reach the end of their useful life, or need to be disposed of due to a legal requirement or due to their continued presence posing an added risk to public health or safety, the project applicant would be required to promptly discontinue use and dispose of such batteries in accordance with all applicable laws and regulations, including but not limited to those related to hazardous materials and hazardous waste.

Hazardous Materials Business Plan

Section 25505 of the Health & Safety Code establishes requirements for hazardous material business plans (HMBPs) in California. An HMBP would be required to be prepared for the proposed Project in accordance with established requirements and submitted to the City and LACoFD for review and approval. The requirements for HMBPs, which will be added as a condition of approval for the proposed Project, include:

- An inventory of hazardous materials onsite.
- An Emergency Action Plan including procedures and contacts for communicating an immediate response to a reportable release or threatened release of a hazardous material, and procedures to mitigate a release or threatened release.
- Employee training in project safety procedures and emergency response plans and procedures in the event of a reportable release or threatened release.
- A site map that depicts north orientation, loading areas, internal roads, adjacent streets, storm and sewer drains, access and exit points, emergency shutoffs, evacuation staging areas, hazardous material handling and storage areas, and emergency response equipment.

3. ENVIRONMENTAL CHECKLIST

Decommissioning

For purposes of this analysis, the proposed Project is anticipated to be decommissioned after 35 years of operation. Decommissioning activities would involve de-energizing all equipment prior to removal. Where possible, equipment would be salvaged, placed in appropriate shipping containers, and secured in a truck transport trailer for shipment off-site to be recycled or disposed of at an appropriately licensed disposal facility. The demolition debris and removed equipment may be cut or dismantled into pieces that can be safely lifted or carried with the equipment being used. Additionally, the batteries would be collected and recycled to avoid the potential for batteries to be disposed of as municipal waste. All decommissioning activities would adhere to the requirements set forth by the City, and be in accordance with all applicable federal and state regulations at the time of decommissioning and as determined by City. Adherence to the applicable regulations would help ensure that the proposed project would not create a significant hazard to the public or the environment as a result of the decommission activities that would be undertaken. Therefore, compliance with the above requirements would reduce impacts to less than significant and no mitigation measures are necessary.

f) Would the proposed project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

The proposed Project includes modular outdoor-rated PowerTitan 2.0 battery units made by Sungrow. The units contain lithium-ion batteries installed in racks inside the enclosure. Each enclosure contains six racks with eight modules each, for a total of 48 liquid-cooled battery modules. A Power Conversion System (PCS), which manages how electricity flows between the batteries and the electric grid or facility load, is underneath each rack. The PowerTitan 2.0 includes a vent panel, heat and smoke detectors, a sound beacon, ventilation system, and flammable gas detector. The PowerTitan 2.0 enclosures include an NFPA 69 ventilation system to expel battery vent gas in case of cell failure. The exhaust fan activates upon detection of hydrogen gas and expels air and vent gas. This system is designed to prevent an explosive atmosphere. An inlet louver would be located on the left side of the enclosure near the bottom, and an exhaust fan would be located on top of the enclosure near the right side. The exhaust fan would activate upon detection of hydrogen gas and expels air and vent gas.

Following is a discussion of the potential hazardous impacts that could arise through the accidental release of hazardous materials from the proposed Project. No toxic air contaminants are emitted during normal operation of a BESS. However, there is the potential for toxic air

3. ENVIRONMENTAL CHECKLIST

contaminant emissions to be released during a thermal runaway² event if a fire occurs within a container due to battery malfunction, elevated temperatures, and battery combustion.

Plume Study

A plume study was conducted for the proposed Project to determine toxicity and flammability hazards posed to nearby areas in the unlikely event of a battery failure scenario (Hazard Dynamics 2025; Appendix M). The study considered toxic materials that can be released by lithium iron phosphate (LFP) batteries during thermal failures. It should be noted that the proposed project would use LFP batteries instead which have better thermal stability, longer lifespan, and less air toxic emissions compared to lithium-ion battery packs (i.e., nickel-manganese-cobalt [NMC] lithium-ion batteries) used at older BESS facilities.

Accumulation of flammable battery vent gas outside a failing BESS enclosure was also considered. Computational fluid dynamics models were utilized to simulate plumes resulting from theoretical battery failure scenarios. The modeled scenarios considered a non-fire scenario in which battery vent gas is released; a small fire scenario; and a large fire scenario. Low and high wind conditions were evaluated based on nearby meteorological data. Toxic gas concentrations 6.6 feet from ground level and flammable gas accumulation surrounding the BESS enclosure were estimated using Fire Dynamics Simulator. The analysis was conducted using a set of worst-case scenarios and included up to a fully involved fire in a single battery unit.

Toxicity hazards may exist alone or in combination with fire and explosion hazards. A significant amount of the gas released during thermal runaway is carbon monoxide (CO), which is toxic. Depending on the conditions, the combustion of battery gases may burn off some carbon monoxide or create additional carbon monoxide from partially reacted hydrocarbons. Smaller amounts of other toxic gases may also be released depending on the battery cell, whether the gases burn, and if water or other suppression agents are added. Lithium-ion cells in thermal runaway may release hydrogen fluoride (HF), hydrogen chloride (HCl), hydrogen cyanide (HCN), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and other gases. When the gases burn, some of the toxic components may be consumed, although others may be generated. Smoke from many fires, including battery fires, is considered hazardous. Smoke typically includes asphyxiant gases, irritant toxic gases, and particulate matter. The introduction of water to a fire may change the composition of the smoke and can create water runoff, which may also contain hazardous substances and alter the toxic release profile. Additionally, when a lithium-ion cell is exposed to high temperatures such as those due to fire exposure or propagating thermal runaway, it produces toxic compounds.

² Thermal runaway chain reaction is when a battery cell rapidly overheats and cannot cool itself down, leading to escalating temperatures, gas release, and sometimes fire or explosion.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Failure of lithium-ion cells may result in gas production inside of the cells. When enough gas is produced, a safety vent may open, or the cell package may rupture. The gas mixture released is flammable and toxic and is primarily made up of CO, carbon dioxide (CO₂), hydrogen (H₂), and an assortment of hydrocarbons. If ignited, the combustion of these gases can lead to a fire or an explosion.

When a lithium-ion cell is exposed to high temperatures such as those due to fire exposure or propagating thermal runaway, it produces toxic compounds. Plastic contained in the battery system may contribute to these toxic combustion products. Such products may include CO, nitrogen oxides (NO_x), SO₂, HCl, and HF. The quantity of HF produced is related to the electrolyte solvent and the chemical reactions initiated.

Harmful levels of toxic gases are defined as immediately dangerous to life or health (IDLH) and acute exposure guideline levels (AEGL). IDLH is defined as a concentration of any toxic, corrosive, or asphyxiant substance that poses an immediate threat to life, would cause irreversible or delayed adverse health effects, or would interfere with an individual's ability to escape from a dangerous atmosphere. AEGLs are defined as the health effects of a once-in-a-lifetime exposure to airborne chemicals. AEGL concentrations are provided for different exposure times and health effect levels. Level 1 is discomfort or irritation, Level 2 is the onset of irreversible or serious health effects, and Level 3 describes life-threatening health effects. Toxic gases related to battery energy storage systems along with their IDLH, AEGL-2, and AEGL-1 concentrations are shown in Table 4, *Chemical Thresholds During Battery Failure*, and are based on an exposure time of 30 minutes.

Table 4 Chemical Thresholds During Battery Failure

Chemical	IDLH (ppm)	AEGL-3 (ppm)	AEGL-2 (ppm)	AEGL-1 (ppm)
Carbon Monoxide	1,200	600	150	NR
Carbon Dioxide	40,000	NR	NR	NR
Hydrogen Chloride	50	210	43	1.8
Hydrogen Cyanide	50	21	10	2.5
Hydrogen Fluoride	30	62	34	1
Nitrogen Dioxide	13	25	15	0.50
Nitric Oxide	100	NR	NR	NR
Sulfur Dioxide	100	30	0.75	0.20
Benzene	500	5,600	1,100	73
Toluene	500	5,200	760	67

Source: Appendix M

Note: NR = Not recommended due to insufficient data

3. ENVIRONMENTAL CHECKLIST

In case of a toxic gas release, it is expected that the impacted area would be downwind of the site. Prevailing winds generally come from the south-southwest, have an average wind speed of 6.9 mph, have a peak wind speed of 20 mph or more, with conditions calm approximately 20 percent of the time. The assumed wind speed is 15 mph. The nearest residential property is 111 feet away from the BESS enclosure at the edge of the site.

Fire and Toxicity Modeling

Data from the UL 9540A test was used to conduct plume modeling for a number of different failure scenarios. A UL 9540A test forces individual cells, modules, and units into a thermal runaway to evaluate gas release and failure behavior. Gases generated during thermal runaway are collected and analyzed for key chemicals. The Plume Study scenarios included various failure conditions, including different wind speeds, fire sizes, and whether burning occurred. Two heat release rates; a full enclosure fire, and a smaller fire where the enclosure does not fully burn. Fire spreading between modules or units was not modeled, as test data did not show such behavior. It was assumed that all cells and modules would burn over the course of two hours (half an hour ramp-up, steady burn for an hour, and half an hour ramp-down).

Non-fire scenarios examined the release of lithium-ion battery vent gases without burning. Several cases were modeled to represent different levels of thermal runaway, including average gas release from a module, the peak module release rate, the maximum release the NFPA 69 ventilation system can handle before exceeding 25 percent of the lower flammability limit (LFL), the failure of a string of batteries, and the failure of an entire unit.

Two cases modeled the average module release both with and without active ventilation. The gas release rate used approximates the average release rate expected from five cells failing at different times. The peak release scenario used the highest instantaneous gas release from a single cell, representing a worst-case module failure. This same rate was also applied to string and unit failure scenarios, assuming two modules fail together for a string and four for a unit. Simultaneous failure of all modules is highly unlikely. This peak rate was also used to assess larger failures of a string and a unit. The string failure scenario assumes that two modules are failing at the same time, and the unit failure scenario assumes that four modules fail at the same time. While other modules in a string or unit may also fail, it is unlikely that they would all fail at the same time. For modeling purposes, the most significant components which account for more than 95 percent of the gas are modeled in the non-fire gas release mixture, while minor hydrocarbon elements are approximated as propane.

Plume Toxicity Results

Results were collected for battery vent gases in non-fire scenarios and combustion products in fire scenarios. Concentrations were measured at 6.6 feet above ground—the typical level people would breathe when standing near an incident. Vent gas concentrations remain relatively low

3. ENVIRONMENTAL CHECKLIST

even near the enclosure and diminish significantly away from the enclosure in scenarios without fire.

In fire scenarios, combustion product concentrations at 6.6 feet above ground stay low when wind speeds are 3.4 mph. At higher wind speeds (15 mph which is in the 99th percentile wind speed at the Project Site), concentrations are higher near the enclosure but decrease quickly with distance. Since only part of the vent gas or combustion products is toxic, actual toxic gas concentrations would be much lower than the total measured values.

The trajectory of the battery vent gas coming out of the enclosure in scenarios without burning depends on the size of gas release, whether the ventilation system is active, and the wind speed. Because the exhaust fan is on top of the enclosure, it lofted the battery gas upward when activated. This results in much of the battery gas being above the 6.6-foot level and more rapid mixing of the battery gas with the surrounding air.

The speed of the wind also affects the path and mixing of the battery vent gas expelled from the enclosure. The fire scenarios with greater wind speeds resulted in higher concentrations of combustion products 6.6 ft above ground level. The heat from fire conditions makes gases more buoyant such that they rise away from the ground. In most common wind conditions, fire product concentrations are low at ground level. However, under conditions of high wind, this buoyant effect may be partially overcome. The scenarios with both fire and high winds yielded the highest gas concentrations at the greatest distances. In low wind conditions, combustion products for a small fire also rise but to a lesser degree than for a large fire scenario.

Although multiple toxic gases may be components of battery vent gas, CO is generally the most abundant toxic gas of concern. Many different toxicity levels exist for CO. Table 5 shows the CO concentration thresholds for different toxicity levels and the maximum modeled distance exceeding each threshold including the EPA National Ambient Air Quality Standards (NAAQs), which was created to protect public health from chemical exposure, and OSHA Permissible Exposure Limits (PELs) which were created to protect workers against health effects resulting from exposure to hazardous chemicals. The large fire, high wind scenario was the only scenario with carbon monoxide concentrations that exceeded the IDLH and AEGL levels at 6.6 feet above ground level. The unit gas release scenario with high winds resulted in the worst-case distances at 6.6 feet above ground level. The fire scenarios with low wind remained below all reported toxicity thresholds at 6.6 feet above ground level at all distances.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Table 5 Toxicity Level for CO

Thresholds of Toxicity Level for CO	Concentration (ppm)	Worst-Case Modeled Distance
IDLH	1,200	13 feet
AEGL-3 (30-minute)	600	15 feet
AEGL-2 (30-minute)	150	19 feet
OSHA PEL (8-hour average)	50	42 feet
EPA NAAQ (1-hour)	35	50 feet

Source: Appendix M

Additionally, the only reported TAC emitted from the PowerTitan 2.0 battery cells during thermal runaway testing was carbon monoxide (CO). Although other gases were released during the testing, such as carbon dioxide, hydrogen, methane, ethylene, ethane, and propane, these gases are not classified as TACs; they are primarily flammable gases. Although the presence of acidic gases, such as hydrofluoric acid (HF), hydrogen cyanide (HCN) or hydrogen chloride (HCl), were not tested as part of the plume study, similar studies conducted for similar LFP batteries did not detect these acidic gases during module level testing (Fisher 2023).

Typically, hydrocarbons such as benzene and toluene are the only toxic gas concentrations other than carbon monoxide that are measured as part of the UL 9540A testing process. These do not present significant toxicity hazards compared to carbon monoxide and hydrogen fluoride, as their concentrations in battery gas are usually significantly less.

Flammable Gas Plume

Several thermal runaway scenarios were considered for the flammable gas plume analysis: (1) Average thermal runaway of a single module, (2) Peak thermal runaway of a single module, (3) thermal runaway of a string of modules, and (4) thermal runaway of a BESS unit. Peak thermal runaway is defined as the maximum gas release rate the NFPA 69 ventilation system can handle before the exhaust exceeds 25 percent LFL of the battery gases, a gas release rate representative of the failure of a string of batteries, and a gas release rate representative of a full unit failure. The average module thermal runaway scenario without ventilation resulted in a flammable region (battery vent gas concentration above LFL) that extended less than four inches vertically only directly over the exhaust fan. The same gas release with ventilation did not result in a flammable region due to the dilution of battery gas resulting from air being mixed in by the exhaust fan. Neither the low wind nor the high wind unit gas release scenario resulted in the formation of a flammable cloud outside of the enclosure.

Because the unit gas release scenarios did not result in a flammable cloud outside of the enclosure due to the active ventilation system diluting the gas, the active ventilation system would also prevent formation of flammable gas clouds during module and string release

3. ENVIRONMENTAL CHECKLIST

scenarios. Since the flammable gas cloud is less far reaching than the toxic gas cloud, appropriate setbacks will be dictated by toxic gas plume results.

Conclusion

Based on the model results and the prevailing wind direction at the site (from the south-southwest), it is unlikely that toxic levels of carbon monoxide that may result in irreversible or serious health effects would reach populated areas in the event of a single BESS unit experiencing a failure event. Carbon monoxide is of primary concern due to its comparatively high concentrations and toxicity. The modeled average carbon monoxide concentrations may be immediately dangerous to life and health up to 13 feet, cause life-threatening health effects (exceed the AEGL-3 level) up to 15 feet, and cause serious health effects (exceed the AEGL-2 level) up to approximately 19 feet from battery unit in a large fire scenario with high winds. The modeled average carbon monoxide concentrations may exceed EPA NAAQ 1-hr levels and cause physical symptoms up to approximately 50 feet from the unit during a unit thermal runaway gas release scenario with high winds. The modeled high wind speed was 15 mph, which is the 99th percentile wind speed at the Project Site and had a concentration of 35 ppm from the nearest residential property which is approximately 111 feet away. No toxicity consequences were present for the modeled scenarios with low wind conditions. Based on worst-case modeled carbon monoxide concentrations that could reach AEGL-2 (irreversible or serious health effects), BESS enclosure setbacks from the property line would exceed 19 feet and a sufficient and reliable means of notification would be provided for areas where the property line is less than 19 feet from the nearest BESS enclosure. Sufficient and reliable means of notification could include, but are not limited to, visual and audible alarms to alert people who may be in the vicinity of the site or providing procedures requiring site personnel to secure the area in the event of a BESS failure. All non-essential personnel would evacuate the immediate area and emergency response personnel would wear Self-Contained Breathing Apparatus (SCBA) when operating in the vicinity of a unit that is in thermal runaway.

To mitigate exposure to CO and smoke during an unlikely runaway thermal event, the proposed Project would be required to include a formal emergency response plan prepared by a qualified fire safety engineer for the specific design of the project per LACoFD, as identified in APM-4 (which would be included as a condition of approval for the proposed Project). The plan would be reviewed and approved by LACoFD during the building permit process. The emergency response plan would stipulate the following:

- For a runway event involving a single unit in worst-case evacuation of personnel and people within the facility property lines is recommended. Personnel should be evacuated to locations upwind of the facility. During a failure event, evacuation of buildings immediately adjacent to the site and limiting use of public ways adjacent to the site should be considered.

3. ENVIRONMENTAL CHECKLIST

- All personnel engaged in fire suppression and rescue operations near the container involved should use appropriate PPE such as SCBA and bunker gear.
- Support personnel without breathing apparatus and the command post be located at least 42 feet from units involved.
- Monitoring toxic and flammable gas types downwind from the property line may be considered. If toxic and flammable gas types are measured to exceed permissible levels, evacuation or shelter-in-place of downwind areas may be required.
- If there is a concern about water pollution, water containment barriers or discontinuation of water use may be considered.
- If a long duration scenario is expected, common interventions include shelter-in-place and evacuation orders for the surrounding area. The exposure distances discussed above may be used to establish shelter-in-place or evacuation distances. If abnormally high wind conditions beyond the 99 percent wind speed (15 mph) occur or more than one enclosure fails, toxic gas concentrations may extend beyond the estimated distances. In this case, it may be appropriate to increase evacuation distances beyond the exposure distances discussed above. Air quality monitoring may be helpful in determining evacuation distances.

Emergency Air Toxics Analysis

To supplement the information in the Plume Study, PlaceWorks prepared additional air dispersion modeling and risk determinations for pollutants not evaluated in the Marici Plume Study including the smoke generated during a BESS fire which results in fine particulate matter (PM_{2.5}) emissions.

Methodology

Modeling evaluated TAC and PM_{2.5} emissions from a thermal runaway event resulting from the failure and combustion of all 48 modules within a single battery enclosure and for a 4-hour release period. This modeling is a more conservative assumption than was used in the Appendix M, which assumed a fire duration of two hours. A 30-minute release period was assumed to indicate how long a fire event would burn uncontrolled before first responders would arrive. As previously stated, the BESS would not emit TACs during normal operations and a full health risk assessment (HRA) is not required. However, as a precautionary measure, potential acute risks were determined for nearby sensitive receptors in the case of a battery cell malfunction and thermal runaway event.

It should also be noted that the failure probability of multiple battery racks (or modules) from a thermal runaway event is low due to fire detection and venting systems (Consolidated Edison

3. ENVIRONMENTAL CHECKLIST

2017). Therefore, the use of a 4-hour release period and the involvement of all 48 modules is conservative.

Air dispersion modeling was conducted to assess how emissions from the unlikely event of a thermal runaway could move through the air and affect nearby homes. The study looked at a possible 4-hour release from the battery enclosures, using standard assumptions about release height, temperature, and airflow. Two release points were modeled at the southwest and southeast corners of the Project Site, with the southeast point closest to nearby residential receptors. The model checked air quality on a grid to see how concentrations might spread, focusing especially on the neighborhood to the south.

The results showed that the highest potential exposure for a nearby resident would be at a home about 130 feet south of the site. The study also calculated short-term exposure levels (over one hour and one day) to estimate the maximum possible concentrations at that location.

To determine the significance of air emissions, the 1-hour and 24-hour pollutant concentrations were compared to the Acute Emergency Guideline Levels (AEGLs) for CO. The United States Environmental Protection Agency (USEPA) issues AEGLs to be used by emergency planners and responders as guidance for accidental releases of chemicals into the air. AEGLs represent threshold values for the general public and are determined for short exposure periods (e.g., 10 minutes, 30 minutes, 1 hour, 4 hours, 8 hours) and are presented in parts per millions (ppm) for 3 levels based on severity of the chemical in air.

Concentrations below AEGL-1 represent exposure levels that could produce mild and non-disabling irritation, or asymptomatic, non-sensory effects. Potential impacts from PM_{2.5} emissions would only occur for a limited period-of-time from an emergency event. Therefore, for PM_{2.5}, the 24-hour PM_{2.5} ground-level concentrations were compared to the corresponding Air Quality Index (AQI) value. The AQI is a measure of ambient outdoor air concentrations.

Results and Conclusions

The results of the emergency air toxics evaluation for CO are provided in Table 6. Based on the AERMOD receptor grid, the MEIR was determined to be a single-family residence approximately 130 feet south of the Project Site. As demonstrated in Table 6, the maximum 1-hour ground-level concentration for CO did not exceed the AEGL levels for any of the averaging times (i.e., 10 minutes to 8 hours).

3. ENVIRONMENTAL CHECKLIST

Table 6 Emergency Air Toxics Analysis Results – Maximum Exposed Individual Resident

Air Pollutant	Emissions Rate for Enclosure (g/s)	1-Hour Ground-Level Concentration (ppm)	Threshold: 1-hr AEGL (ppm)	Exceeds Threshold?
Carbon Monoxide	269.0	7.2	AEGL-1: n/r AEGL-2: 83 AEGL-3: 330	No, it does not exceed AEGL-2 or 3 for any averaging time
Air Pollutant	Emissions Rate for Enclosure (g/s)	24-Hour Ground-Level Concentration ($\mu\text{g}/\text{m}^3$)	Threshold: 24-hr AAQS ($\mu\text{g}/\text{m}^3$)	Exceeds Threshold?
PM _{2.5}	48.76	145.0	35	Yes

Notes: n/r = not recommended due to insufficient data (Appendix O).

The maximum 24-hour PM_{2.5} concentrations was calculated to be 145 $\mu\text{g}/\text{m}^3$ at the MEIR. The resulting AQI for a concentration of 145 $\mu\text{g}/\text{m}^3$ would be 220, which is between 201 and 300, and the air would be categorized as very unhealthy (USEPA 2024b). For this AQI category, USEPA recommends that children, active adults, and people with respiratory diseases, such as asthma, should avoid outdoor exertion and all others should limit prolonged outdoor exertion. Studies conducted during wildfire events in California with high PM_{2.5} concentrations showed that indoor air concentrations were 73 percent lower than outdoor air concentrations due to measures taken to reduce infiltration, such as closing doors and windows, reducing ventilation, and active air filtration (Liang et al 2021). USEPA's main recommendation for very unhealthy hazardous smoke events is to avoid or limit outdoor activities. Additionally, the Project Site is within 0.15-mile of LACoFD Station No. 43, which would ensure a prompt response in the event of a fire at the Project Site and the proposed Project would implement an EAP that covers any potential onsite fires.

It should also be noted that the Emergency Air Toxics Analysis is based on an emergency scenario that is not reasonably foreseeable. There are no reported failures that would cause thermal runaway to occur in all 4,992 cells that make up a battery enclosure. Also, there have been no reported incidents for fires associated with PowerTitan 2.0 battery enclosures. The PowerTitan 2.0 also uses a closed-loop liquid cooling system to maintain optimal operating temperatures. Impacts associated with PM_{2.5} emissions resulting from smoke would be transient in nature and not likely to last more than 24 hours.

As such, the results indicate that the BESS facility would not expose nearby sensitive receptors (i.e., residents) nor adjacent industrial land uses to TAC concentrations in the event of a thermal runaway event. Given preparation of the EAP which will define emergency response

3. ENVIRONMENTAL CHECKLIST

requirements, impacts are considered less than significant, and no mitigation measures are necessary.

Los Angeles County Fire Department Requirements for BESS Facilities

BESS facilities must meet the requirements of the National Fire Protection Association (NFPA), which issues standards for addressing energy storage systems (NFPA 2022). The proposed BESS battery enclosures would be equipped with fire monitoring systems, controls, and liquid cooling units to keep the batteries at optimal operating temperatures. The fire monitoring systems consist of smoke and heat sensors, gas detectors, alarms, remote monitoring, and an NFPA 69-compliant ventilation system to prevent an explosive atmosphere. The fire protection system would have an alarm that would trigger core power shutdown during a fire, smoke, overheating, overpressure, or other issues. Also, once the concentration of combustible gas reaches 10 percent LEL, the combustible gas detector will activate the exhaust system to turn on. The entire project power shutdown would occur automatically during electrical fault conditions (e.g., high-voltage, high-frequency, ground fault). In addition, the proposed BESS would be equipped with breakers that could be opened manually to power down different equipment at the proposed project.

LACoFD has experience in the permitting of BESS projects and will be responsible for plan checking and approvals. LACoFD has implemented additional permitting requirements to ensure fire safety related to the BESS, as follows:

- **Fire Hydrants.** Per LACoFD regulations, the project design must include internal hydrants at distances that would ensure a maximum hose pull of 150 feet. This is a shorter distance than is typical and allows for faster response times for defensive firefighting.
- **Training.** A qualified battery safety engineer would conduct one- or two-day fire department training.
- **Hazard Mitigation Plan / Emergency Response Plan.** The BESS facility is required to include a formal hazard mitigation analysis and site-level emergency response plan generated by a qualified fire safety engineer for the specific design of the project pursuant to LACoFD requirements. This would be reviewed and approved by LACoFD during the building permit process.
- **Fire Suppression Systems.** Current standards require a dry standpipe connection to the BESS containers. A standpipe is a port in the BESS container that allows a fire hose to be connected to the container. With the provision of a dry standpipe, the local fire department can contain the fire by flooding the system with water, if determined to be the best firefighting option.
- **Installation.** Each module is tested at the manufacturer's facility and inspected for damage at the Project Site. Once installed and in operational mode, the battery management system

3. ENVIRONMENTAL CHECKLIST

(BMS) is calibrated for specific use at the site. The BMS protects the battery cells, modules, and racks from current, voltage and temperature design limit deviations by performing an emergency shutdown, when needed.

LACoFD's review and permitting process would ensure that all necessary measures are implemented and that all requirements are adhered to for the proposed BESS facility, thereby ensuring that impacts related to reasonably foreseeable upset and accident conditions involving the release of hazardous materials would be less than significant and no mitigation measures are necessary.

California Public Utilities Commission - General Order No. 167

On March 13, 2025, the California Public Utilities Commission (CPUC) adopted new maintenance and operation standards for BESS facilities under General Order No. 167. The new maintenance and operation standards for BESS facilities states that each facility should develop an emergency response and action plan as required by Senate Bill (SB) 38. In addition, SB 1383 requires the CPUC to implement and enforce standards for the maintenance and operation of facilities for the storage of electricity owned by an electrical corporation or located in the state. The bill would require the Independent System Operator (ISO), who manages the flow of electricity across high-voltage, long-distance power lines, to maintain records of storage facility outages and to provide those records to the commission on a daily basis. The proposed Project would be required to implement these regulatory requirements. Therefore, impacts related to reasonably foreseeable upset and accident conditions involving the release of hazardous materials would be less than significant and no mitigation measures are necessary.

g) Would the proposed project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

The Project Site is within one-quarter mile of a school. The nearest school to the Project Site is the United Christian Education Center, which is approximately 0.09 miles (approximately 475 feet) southeast. There are no other existing or proposed schools in the vicinity of the Project Site.

As substantiated in Sections 3.9.a and 3.9.b, Project operation would not emit hazardous substances or hazardous wastes in quantities posing substantial hazards to the public or the environment. Additionally, the use of hazardous materials during the proposed Project's construction phase would not be in such quantities or stored in such a manner as to pose a significant safety hazard. These activities would be short term and would cease upon completion of the proposed Project's construction phase. All potentially hazardous materials used on the Project Site would be used and stored in accordance with manufacturers' instructions and handled in compliance with applicable standards and regulations. The proposed Project would also implement an EAP and SGMP, as described above, in the event of an emergency as a result

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

of a potential (although unlikely) runaway thermal event. Additionally, any hazardous waste produced as part of the Proposed Project would be disposed of in accordance with federal, state, and local regulations.

Therefore, impacts related to the emission or handling of hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school from the BESS facility would be considered less than significant and no mitigation measures are necessary.

Additionally, as discussed in Section IX.a, the tie line would produce EMF effects. Based on the analysis found in EMF Study (Appendix N), the EMF levels along the tie line are below the recommended thresholds and the school's occupants would not be affected by the tie line EMF levels.

Based on the preceding, impacts related to the emission or handling of hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school from the Project Site would be less than significant and no mitigation measures are necessary.

h) Would the proposed project be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code § 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

Three Phase I ESAs prepared for the proposed Project (Appendices F through H) and involved a search of local, state, and federal databases for known hazardous or contaminated material sites of the Project Site and a one-mile radius. The results of the database search are provided in Table 7.

Table 7 Phase I ESAs and LSIs Governmental Databases Summary

Facility Name and Location	Estimated Distance/Direction /Gradient	Database Listing	Findings Summary
Hensim USA dba TierraMotorsports 16257 Gale Avenue (a warehousing and product fulfillment business)	Site	FINDS	Not a REC
White & Blue Lion, Inc. 16265 Gale Avenue (a warehousing and	Site	HAZNET, HWTS	Not a REC

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
 NEGATIVE DECLARATION
 CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Table 7 Phase I ESAs and LSIs Governmental Databases Summary

Facility Name and Location	Estimated Distance/Direction /Gradient	Database Listing	Findings Summary
product fulfillment business)			
Hal Riger 16207 Gale Avenue	Site	HWTS	Not a REC
San Gabriel Valley (Area 4) Stimpson Avenue & Old Valley Road	Encompasses the site	AOCONCERN, NPL, SEMS, US ENG Controls, ROD, FINDS, ECHO, ICIS, PRP	REC, discussed below
Southern California Edison (SCE) Walnut Substation 16333 Gale Avenue	Adjoining / East / Upgradient	AST, CA FID UST, CERS HAZ Waste, CERS Tanks, Cortese, E Manifest, HIST UST, LUST, UST, UST Finder Release, RCRA-LQG, SWEEPS UST	REC, discussed below
Metal Cutting Service and Ceromet Inc. (DEST) 16233 East Gale Avenue & 16235 East Gale Avenue	Site	CERS, CIWQS, E MANIFEST, ECHO, FINDS, HAZNET, HWTS, NPDES, RCRA NonGen / NLR, CERS HAZ WASTE, FINDS, LOS ANGELES CO. HMS, CPS-SLIC, WIP	REC, discussed below
United Stationers 918 South Stimson Avenue	Adjoining / West-northwest / Down- gradient	WIP	Not a REC
Challenger Enterprises, Inc.	Adjoining / West-northwest / Down- gradient	CPS-SLIC	Not a REC

**MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY**

3. ENVIRONMENTAL CHECKLIST

Table 7 Phase I ESAs and LSIs Governmental Databases Summary

Facility Name and Location	Estimated Distance/Direction /Gradient	Database Listing	Findings Summary
918 South Stimson Avenue			
Peter Vallejo 16257 Folger Street	Adjoining (130 feet across Gale Avenue) / Southeast / Upgradient	RCRA NonGen/NLR	Not a REC
Buccola Manufacturing, Inc. 16213 East Gale Avenue	150 feet / West / Down-gradient	Drycleaners	Not a REC
Crown City Furniture Manufacturing 16213 East Gale Avenue	150 feet / West / Down-gradient	CPS-SLIC, WIP	Not a REC
Lennar Homes of California LLC 16234 Folger Street	230 feet / South / Upgradient	E Manifest, RCRA NonGen/NLR	Not a REC
Orbis Industries, Inc., dba Diato 16205 Ward Way	350 feet / West / Down-gradient	CPS-SLIC, WIP	Not a REC
Krall Cast, Inc. 16205 Ward Way	350 feet / West / Down-gradient	E Manifest, RCRA NonGen/NLR	Not a REC
DPS Diesel Parts & Service 16205 Ward Way	350 feet / West / Down-gradient	RCRA NonGen/NLR	Not a REC
Future Hitech Planning 16207 Ward Way	350 feet / West / Down-gradient	RCRA NonGen/NLR	Not a REC
L.V.I.-Paul Taylor Ent., below. Inc. 16207 Ward Way	350 feet / West / Down-gradient	CPS-SLIC, WIP	Not a REC

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
 NEGATIVE DECLARATION
 CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Table 7 Phase I ESAs and LSIs Governmental Databases Summary

Facility Name and Location	Estimated Distance/Direction /Gradient	Database Listing	Findings Summary
White & Blue Lion Inc. 16265 Gale Avenue	Adjoining / East / Up-gradient	HWTS	Not a REC
Hacienda La Puente Unified School District Glenelder Elementary	215 feet / South / Up- to Cross-gradient	HWTS, NPDES, E MANIFEST, RCRA NonGen / NLR	Not a REC
Sun Belt Rentals 16157 Gale Avenue	220 feet / West / Down-gradient	HWTS	Not a REC
Southern California Edison (SCE) Walnut Substation 16333 Gale Avenue	290 feet / East / Up- to Cross-gradient	AST, CA FID UST, CERS HAZ Waste, CERS Tanks, Cortese, E Manifest, HIST UST, LUST, UST, UST Finder Release, RCRA-LQG, SWEEPS UST	Not a REC
Southern California Gas Company 920 South Stimson Avenue	165 feet / West / Down-gradient	CERS HAZ WASTE, CERS TANKS, HIST UST, SWEEPS UST, UST, HWTS, Cortese, LUST, UST FINDER RELEASE, E MANIFEST, RCRA-SQG	Not a REC
M.G. Comfort Apparel Inc. / Phillips Machine & Welding / PMW Manufacturing 16119 East Gale Avenue	255 feet / Southwest / Cross-gradient	CPS-SLIC, DRYCLEANERS, HWTS, E MANIFEST, RCRA NonGen / NLR, WIP	Not a REC

**MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY**

3. ENVIRONMENTAL CHECKLIST

Table 7 Phase I ESAs and LSIs Governmental Databases Summary

Facility Name and Location	Estimated Distance/Direction /Gradient	Database Listing	Findings Summary
Lennar Homes of California LLC 16234 Folger Street	230 feet / South / Upgradient	E Manifest, RCRA NonGen/NLR	Not a REC
Robert Spinks 16251 Folger Street	340 feet / Southeast / Up- to Cross-gradient	HWTS	Not a REC
Phillips Aerospace 16125 East Gale Avenue	255 feet / Southwest / Cross-gradient	HWTS, E MANIFEST, RCRA NonGen / NLR	Not a REC

Sources: Appendices F through H.

Notes: Aboveground Storage Tanks (AST), Area of Concern (AOCONCERN), California Environmental Reporting System (CERS), California Environmental Reporting System Hazardous Waste (CERS HAZ Waste), California Environmental Reporting System Hazardous Waste (CERS HAZ WASTE), California Environmental Reporting System Tanks (CERS Tanks), California Integrated Water Quality System (CIWQS), Enforcement & Compliance History Information (ECHO), Engineering Controls Sites List (US ENG Controls), Facility and Manifest Data (HAZNET), Facility Index System/Facility Registry System (FINDS), Facility Inventory Database (CA FID UST), Hazardous Waste Electronic Manifest System (E Manifest), Hazardous Waste Electronic Manifest System (E Manifest), Hazardous Waste Tracking System (HWTS), Historical Underground Storage Tank (HIST UST), Integrated Compliance Information System (ICIS), Leaking Underground Storage Tank (LUST), Los Angeles County Hazardous Materials Section (LOS ANGELES CO. HMS), Los Angeles County Hazardous Materials Systems (Los Angeles Co. HMS), National Pollutant Discharge Elimination System (NPDES), National Priorities List (NPL), Potentially Responsible Parties (PRP), Records Of Decision (ROD), Resource Conservation and Recovery Act – Large Quantity Generator (RCRA-LQG), Resource Conservation and Recovery Act Non-Generators/No Longer Regulated (RCRA NonGen/NLR), Standardized Emergency Management System (SEMS), Statewide Environmental Evaluation and Planning System – Underground Storage Tank (SWEEPS UST), Statewide SLIC Cases (GEOTRACKER) (CPS-SLIC), Underground Storage Tank (UST), Underground Storage Tank Finder Release (UST Finder Release), and Well Investigation Program (WIP)

As demonstrated in Table 7, the Project Site includes three RECs. These include the Metal Cutting Service and Ceromet, Inc., San Gabriel Valley (Area 4), which is a groundwater plume, and the Southern California Edison (SCE) Walnut Substation. Additionally, all non-REC listings in Table 7 are substantiated in the three Phase I ESAs (Appendices F through H).

Metal Cutting Service and Ceromet, Inc.

The Metal Cutting Service and Ceromet Inc. site was listed on several regulatory databases. According to the regulatory databases and a review of GeoTracker online databases, the facility was identified as being associated with the San Gabriel Valley (Area 4) because it was part of the

3. ENVIRONMENTAL CHECKLIST

multiple manufacturing facilities located throughout the valley in which San Gabriel Valley (Area 4) is located. However, based on review of the databases, the constituents of concern (PCE and TCE) were not identified; the facility was not reported as a contributor to the San Gabriel Valley (Area 4) groundwater plume; and the case was closed on May 1, 1989. Additionally, the facility was identified under Metal Cutting Service, dated from 1990 and last updated in September 2024, as a hazardous waste generating facility with on-site waste treatment, and waste streams identified as “universal waste”; “unspecified aqueous solution”; “waste oil and mixed oil”; “oil/water separation sludge”; and “other organic solids”. Based on the longevity of business operations (approximately 49 years), the likely use of petroleum and solvents/chemicals as part of the current and historical operations represents a REC to the site. As stated above, to mitigate potential exposure to VECs, a VIMS would be implemented with the planned future building construction to address the documented soil gas concentrations detected. Design of this VIMS will be included within the Building Permit Submittal, as is typical for this type of system. Additionally, as stated above, a SGMP was created to provide BMPs for use in the event impacted soil or excavation water is encountered during construction of the proposed Project (Appendix K). BMPs for the proposed Project are included above and would be implemented during the construction phase.

San Gabriel Valley (Area 4)

The Project Site is within the boundaries of the San Gabriel Valley (Area 4) Superfund Site. The San Gabriel Valley Superfund Site includes multiple areas with contaminated groundwater in the 170-square-mile San Gabriel Valley. Over 30 square miles of groundwater in the valley may be contaminated with VOCs from past releases at multiple manufacturing facilities located throughout the valley. The proposed Project would be occupied by two employees and could be subject to vapor encroachment conditions (VECs). As stated above, to mitigate potential exposure to VECs, a VIMS would be implemented with the planned future building construction to address the documented soil gas concentrations detected. Design of this VIMS will be included within the Building Permit Submittal, as is typical for this type of system.

Southern California Edison (SCE) Walnut Substation

The SCE Walnut Substation was identified as a facility with waste streams that consisted of “Other inorganic solids”; “Polychlorinated biphenyls and material containing PCBs”; “Other organic solids”; “Unspecified oil-containing waste”; “Asbestos containing waste”; “Halogenated solvents”; “Off-specification, aged or surplus organics”; “Waste oil and mixed oil”; “Unspecified solvent mixture”; “Pesticides/Pesticide Production Waste”; “Tank Bottom Waste”; “Liquids with PCBs” (greater than or equal to 50 milligrams per liter); and “Liquids with halogenated organic compounds (greater than or equal to 1000 milligrams per liter); “Hydrocarbon solvents”; “Polymeric resin waste”; “Detergent and soap”; “Ignitable”; “Corrosives”; “Chlordane”; “Chloroform”; “Lead”; “Mercury”; “Benzene”; “Tetrachloroethylene (PCE)”; Trichloroethylene

3. ENVIRONMENTAL CHECKLIST

(TCE)”; and “Nonhalogenated solvents”. Based on review of the regulatory databases and the generated waste streams identified (including halogenated solvents), the absence of analytical data for the presence of halogenated solvents, the longevity of operations, the close proximity to the site, and the shallow depth to groundwater (approximately 19 feet bgs), the potential exists for halogenated solvent impact to the site; therefore, the SCE database listings represents a REC to the site.

As stated above, the BMPs contained in the SGMP would be implemented during the construction phase.

With the implementation of the VIMS project design feature and the SGMP, impacts would be less than significant, and no mitigation measures are necessary.

i) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?

There are no public airports or private airfields within two miles of the Project Site. The nearest public airport is the San Gabriel Valley Airport and is approximately 7 miles northwest of the Project Site. Additionally, there are no helipads within the vicinity of the Project Site (AirNav 2025). The closest helipads to the Project Site include one government- and one private-operated helipad—the Los Angeles County Sheriff’s station ground-level helipad at 150 Hudson Avenue and a private rooftop heliport at 450 Baldwin Park Boulevard (AirNav 2025). The sheriff’s helipad is approximately 0.9 miles north of the Project Site; the roof-top heliport is approximately 3.2 miles northwest of the Project Site. At these distances, development of the proposed Project would not alter the flight path of this airport or helipads and would not increase safety hazards or noise levels in the vicinity of the Project Site. Therefore, no impact related to airport safety hazards would occur and no mitigation measures are necessary.

j) Would the proposed project impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

The proposed Project would not interfere with implementation of the County of Los Angeles Operation Area Emergency Operations Plan (OAEOP) and any of the daily operations of LACoFD or the Los Angeles County Sheriff’s Department. The Los Angeles OAEOP provides guidance and procedures for the county to prepare for, respond to, and recover from the effects of large-scale emergencies regardless of cause, location, or complexity. The City is in Area D of the Los Angeles OAEOP (OAEOP 2023). Additionally, the City’s General Plan includes a Safety Element that identifies natural and man-made environmental hazards and ways to reduce the risk of property damage, injuries, or loss of life. The Safety Element also addresses emergency preparedness within the City.

3. ENVIRONMENTAL CHECKLIST

Neither the Los Angeles OAEOP nor the City's Safety Element provide specific evacuation routes. However, the City Safety Element does state that the City's major roadways and access to major freeways provide numerous evacuation routes in the event of an emergency. The Project Site is not located on or abutting any major freeways. The nearest freeway is SR-60 with the closest freeway ramp approximately 0.3 miles to the southwest via Gale Avenue and Hacienda Boulevard. The Project Site is on Gale Avenue, which is a Secondary Highway and is defined in the City's General Plan as carrying high volumes of traffic and providing access to abutting properties as a secondary function.

Therefore, the proposed Project would not impair implementation of or physically interfere with the City's or Los Angeles County's emergency response or evacuation plans. Impacts would be less than significant, and no mitigation measures are necessary.

k) Would the proposed project expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?

A wildland fire hazard area is typically characterized by areas with limited access, rugged terrain, limited water supply, and combustible vegetation.

As shown in Figure 3, *Aerial Photograph*, the Project Site is in an urbanized area of Industry with surrounding uses consisting mainly of industrial uses. There is no combustible wildland vegetation on or anywhere near the Project Site. The Project Site has well-defined access and would be served by adequate water infrastructure for fire protection purposes. The proposed Project would also be required to be designed and constructed in accordance with the most current California Building Code and California Fire Code, as well as all applicable requirements of LACoFD. Furthermore, there would be no impact for wildland fire risks due to implementation of the proposed Project, as substantiated in Section XX, *Wildfire*. The Project Site is not on or near land classified as a very high fire hazard severity zone. The proposed Project would include the development of a BESS facility on the Project Site that would be staffed with up to two employees. Additionally, the proposed Project would include interior paved access and fire lanes for emergency access. Therefore, implementation of the proposed project would not introduce people or structures to substantial hazards from wildland fires. No impact would occur, and no mitigation measures are necessary.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

X. Hydrology and Water Quality

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
b) Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
i) result in a substantial erosion or siltation on- or off-site;	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
ii) substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or offsite;	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
iii) create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
iv) impede or redirect flood flows?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
d) In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
e) Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

3. ENVIRONMENTAL CHECKLIST

The analysis in this section is based partly on the following technical studies, which are included as Appendices P, K, and E to this Initial Study:

- Hydrology Study and Stormwater Quality Management Plan, February 2025. (Appendix P)
- Soil and Groundwater Management Plan, May 29, 2025. (Appendix K)
- Revised Geotechnical Engineering Report, February 7, 2025. (Appendix E)

DISCUSSION

a) Would the proposed project have a substantial adverse effect on a scenic vista?

The Project Site is in the San Gabriel watershed (Los Angeles County 2007). The San Gabriel River receives drainage from 689 square miles of eastern Los Angeles County, and its headwaters are in the San Gabriel Mountains. The watershed consists of extensive areas of undisturbed riparian and woodland habitats in its upper reaches. The upper watershed also contains a series of flood control dams. Further downstream, toward the middle of the watershed, are large spreading grounds used for groundwater recharge. Land use in the middle and lower parts of the watershed are primarily urban land and highly developed (SWRCB 2024).

Water quality in the City is regulated by the Los Angeles Regional Water Quality Control Board (RWQCB) and its Water Quality Control Plan (Basin Plan), which contains water quality standards and identifies beneficial uses for receiving waters (wildlife habitat, agricultural supply, fishing, etc.). The Basin Plan also includes water quality criteria and standards necessary to support the beneficial uses consistent with federal and state water quality laws. All runoff from the Project Site drains to the San Gabriel River via the San Jose Creek channel. The San Jose Creek Diversion Channel is located approximately 450 feet north from the Project Site.

A development project generally affects the quality of receiving waters over three different phases:

- During the earthwork and construction phase the potential for erosion, siltation, and sedimentation would be the greatest.
- Following construction and before the establishment of ground cover, the erosion potential may remain relatively high.
- Following project completion, impacts related to sedimentation could decrease markedly, but those associated with urban runoff would generally increase.

Following is a discussion of the potential water quality impacts resulting from urban runoff that would be generated during the construction and operational phases of the proposed Project.

3. ENVIRONMENTAL CHECKLIST

Project Construction

Construction-related runoff pollutants are typically generated from waste and hazardous materials handling or from storage areas, outdoor work areas, material storage areas, and general maintenance areas (e.g., vehicle or equipment fueling and maintenance, including washing). The proposed Project's construction phase may cause deterioration in the quality of downstream receiving waters if construction-related sediments or pollutants wash into the existing storm drain system and facilities in the area.

Construction-related activities that are primarily responsible for sediment releases are related to exposing previously stabilized soils to potential mobilization by rainfall/runoff and wind. Such activities include removing vegetation from the site, grading the site, and trenching for infrastructure improvements. Environmental factors that affect erosion include topographic, soil, and rainfall characteristics. Non-sediment-related pollutants are also of concern and generally include demolition and construction materials (e.g., paint and stucco); chemicals, liquid products, and petroleum products used in building construction or the maintenance of heavy equipment; and concrete and related cutting or curing residues. As discussed in the proposed Project's SGMP (Appendix K), while no impacted soils have been identified on-site, during excavation and grading, there is a potential to encounter unknown impacted soils, for example, when buildings, foundations or paving are removed or underlying soils are excavated.

The Project Site and surrounding area also overly the San Gabriel (Area 4) Superfund Site regional groundwater plume (EPA 2021). Based on the regional plume maps the plume is mostly located north/northeast of the Project Site and extends underneath the Project Site in the vicinity of Gale Avenue. Additionally, the adjoining SCE Walnut Substation was identified as a potential source for halogenated solvent impacts to shallow groundwater beneath the Project Site based on the generated waste streams identified, the close proximity to the Project Site, and the shallow depth to groundwater (approximately 19 feet below grade [fbg])³. Based on the maximum depth of the proposed excavation activities (up to 10 fbg), groundwater is not anticipated to be encountered at the Project Site during routine earthwork. However, geotechnical exploration soil borings and/or deep foundations for the interconnection support poles have the potential to encounter groundwater. Therefore, should construction activities under the proposed Project encounter impacted soils or require dewatering or soil boring to levels where groundwater is encountered and the groundwater be released without pretreatment, surface water quality may be degraded.

Discharge of untested and/or untreated groundwater or impacted stormwater to the ground surface, storm drain, or sanitary sewer system is prohibited under state and federal law. The

³ According to the Geotechnical Engineering Report prepared for the proposed Project (Appendix D), groundwater was encountered at depths ranging between approximately 21 and 26 fbg in on-site borings performed in December of 2024. Groundwater levels fluctuate due to seasonal variations in the amount of rainfall, runoff, and other factors.

3. ENVIRONMENTAL CHECKLIST

proposed Project's general contractor would be required to obtain the necessary permit from the California State Water Resources Control Board to conduct the dewatering and discharging activities and to ensure that the required characterization of such water occurs. If either groundwater or stormwater that has contacted impacted soils must be handled, the general contractor is responsible for sampling and testing to ensure handling is in accordance with applicable regulations.

Impacted water must be managed in accordance with applicable waste regulations. Impacted water may be shipped offsite by a licensed hauler to a permitted treatment facility or treated onsite and discharged under a valid permit. Stormwater that comes in contact with contaminated soils at the site would be removed and disposed or treated in accordance with the National Pollutants Discharge Elimination Permit System (NPDES) General Permit for Stormwater Discharges Associated with Construction and Land Disturbance Activities, under the State Water Resources Control Board Construction General Permit (CGP) Order 2022-0057-DWQ, adopted September 8, 2022, effective date of September 1, 2023 (CSWRCB 2022). Projects obtain coverage by developing and implementing a Stormwater Pollution Prevention Plan (SWPPP), which includes estimating sediment risk from construction activities to receiving waters and specifying best management practices (BMPs) that would be implemented as a part of the proposed Project to minimize pollution of stormwater. Categories of BMPs used in SWPPPs are described in Table 8, *Water Quality Protection Construction Best Management Practices*.

Table 8 Water Quality Protection Construction Best Management Practices		
Category	Purpose	Examples
Erosion Controls and Wind Erosion Controls	Use project scheduling and planning to reduce soil or vegetation disturbance (particularly during the rainy season) Prevent or reduce erosion potential by diverting or controlling drainage Prepare and stabilize disturbed soil areas	Scheduling, preservation of existing vegetation, hydraulic mulch, hydroseeding, soil binders, straw mulch, geotextile and mats, wood mulching, earth dikes and drainage swales, velocity dissipation devices, slope drains, streambank stabilization, compost blankets, soil preparation/roughening, and non-vegetative stabilization
Sediment Controls	Prevent the mobilization of soil particles through the use of tarping, matting, or other covers.	Silt fence, sediment basin, sediment trap, check dam, fiber rolls, gravel bag berm, street sweeping and vacuuming, sandbag barrier, straw bale barrier, storm drain inlet protection, manufactured linear sediment controls, compost socks and berms, and biofilter bags

**MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY**

3. ENVIRONMENTAL CHECKLIST

Table 8 Water Quality Protection Construction Best Management Practices		
Category	Purpose	Examples
Wind Erosion Controls	Apply water or other dust palliatives to prevent or minimize dust nuisance	Dust control soil binders, chemical dust suppressants, covering stockpiles, permanent vegetation, mulching, watering, temporary gravel construction, synthetic covers, and minimization of disturbed area
Non-stormwater Management Controls	Prohibit discharge of materials other than stormwater, such as discharges from the cleaning, maintenance, and fueling of vehicles and equipment Conduct various construction operations, including paving, grinding, and concrete curing and finishing, in ways that minimize non-stormwater discharges and contamination of any such discharges	Water conservation practices, temporary stream crossings, clear water diversions, illicit connection/discharge, potable and irrigation water management, and the proper management of the following operations: paving and grinding, dewatering, vehicle and equipment cleaning, fueling and maintenance, pile driving, concrete curing, concrete finishing, demolition adjacent to water, material over water, and temporary batch plants
Waste Management and Controls (i.e., good housekeeping practices)	Manage materials and wastes to avoid contamination of stormwater	Stockpile management, spill prevention and control, solid waste management, hazardous waste management, contaminated soil management, concrete waste management, sanitary/septic waste management, liquid waste management, and management of material delivery storage and use
Tracking Controls	Minimize the tracking of soil off site by vehicles	Stabilized construction roadways and construction entrances/exits, and entrance/outlet tire wash

Source: Compiled by PlaceWorks from information provided in the California Stormwater Quality Association's (CASQA's Construction BMP Handbook).

The proposed Project's construction contractor would be required to prepare and implement a SWPPP and associated BMPs in compliance with the CGP during grading and construction. The SWPPP would specify BMPs, such as those outlined in Table 8, that the construction contractor

3. ENVIRONMENTAL CHECKLIST

would implement to protect water quality by eliminating and/or minimizing stormwater pollution prior to and during grading and construction and show the placement of those BMPs. Project construction activities would also be required to be implemented in accordance with the requirements of Chapter 13.16, Stormwater and Urban Runoff Pollution Control, of the Industry Municipal Code.

Furthermore, the proposed Project's SGMP (Appendix K) outlines additional measures that address the management of impacts soils if encountered, as detailed further in Section IX, *Hazards and Hazardous Materials*. The soil management measures include removing and segregating the impacted soils in a manner to minimize over-excavation or mixing with clean soil. In addition, impacted soils would be removed from the Project Site frequently to minimize the potential for contact between stormwater and any impacted soils identified during excavation. Excavation in areas where impacted soil is encountered would be protected from stormwater run-on by clean soil berms or other diversionary features to direct water away from any exposed impacted soils. Other BMP measures such as covering impacted soils with plastic shall be implemented to prevent or minimize stormwater contact with impacted soils.

Groundwater is not expected to be encountered during construction except potentially for construction of the deep foundations for the electric tie-line support poles, and potentially in borings if additional geotechnical drilling is conducted. If stormwater collects in any excavation during construction, it should be visually inspected for evidence of sheen or other indication of potential constituents of concern (COC) presence such as visually impacted soil in the excavation wall. If groundwater or storm water that has come in contact with potentially impacted soils is to be removed from an excavation, the water shall be managed as potentially contaminated and evaluated through chemical analysis prior to discharge and/or off-site disposal. Samples shall be collected by qualified personnel and characterization shall be coordinated with the Owner. As applicable, produced and/or captured groundwater or stormwater that has contacted impacted soils shall be containerized in suitable portable aboveground storage tanks (ASTs) compatible with the potential COCs and properly secured to prevent unsafe exposure, contact with stormwater, or discharge to the surface, storm drains, or waterways. Secondary containment of the containerized water shall be established for volumes greater than 100 gallons and shall have a capacity of 110 percent of the total volume of the containers, regardless of actual volume stored in the containers. Additional BMPs such as regular inspection of the containers and secondary containment and proper labeling shall be maintained.

Adherence to the BMPs in the SWPPP, Industry Municipal Code requirements, and the additional requirements outlined in the proposed Project's SGMP (which would be added as a condition of approval to the proposed Project) would reduce, prevent, minimize, and/or treat pollutants and prevent degradation of downstream receiving waters. BMPs identified in the SWPPP would reduce or avoid contamination of stormwater with sediment and other pollutants. Based on the preceding, water quality and waste-discharge impacts from Project demolition, grading, and

3. ENVIRONMENTAL CHECKLIST

construction activities at the Project Site would be less than significant and no mitigation measures are necessary.

Project Operation

Operational-related activities at the Project Site (e.g., runoff from parking areas and roads) could generate pollutants that could adversely affect the water quality of downstream receiving waters if effective measures are not used to keep pollutants out of and remove pollutants from urban runoff.

Standards governing discharges to stormwater from Project operation are provided in the MS4 Permit for Los Angeles County in the jurisdiction of the Los Angeles RWQCB (Order No. R4-2021-0105). The City of Industry has adopted the Los Angeles County Department of Public Works' (LACDPW) Low Impact Development Standards Manual and all revisions/updates. The LACDPW's Low Impact Development (LID) Standards Manual was adopted in 2014 and provides guidance for the implementation of stormwater quality control measures in new development and redevelopment projects in unincorporated areas of the County with the intention of improving water quality and mitigating potential water quality impacts from stormwater and non-stormwater discharges.

LID is a stormwater management and land development strategy that combines a hydrologically functional site design with pollution prevention measures to compensate for land development impacts on hydrology and water quality. LID techniques mimic the site predevelopment hydrology by using treatment control BMPs that store, infiltrate, evapotranspire, biofilter, or detain runoff close to its source. Source control BMPs reduce the potential for pollutants to enter runoff and are classified in two categories—structural and nonstructural. Structural source control BMPs have a physical or structural component, such as inlet trash racks, trash bin covers, and an efficient irrigation system, to prevent pollutants from contacting stormwater runoff. Nonstructural source control BMPs are procedures or practices used in project operation, such as stormwater training or trash management and litter control practices.

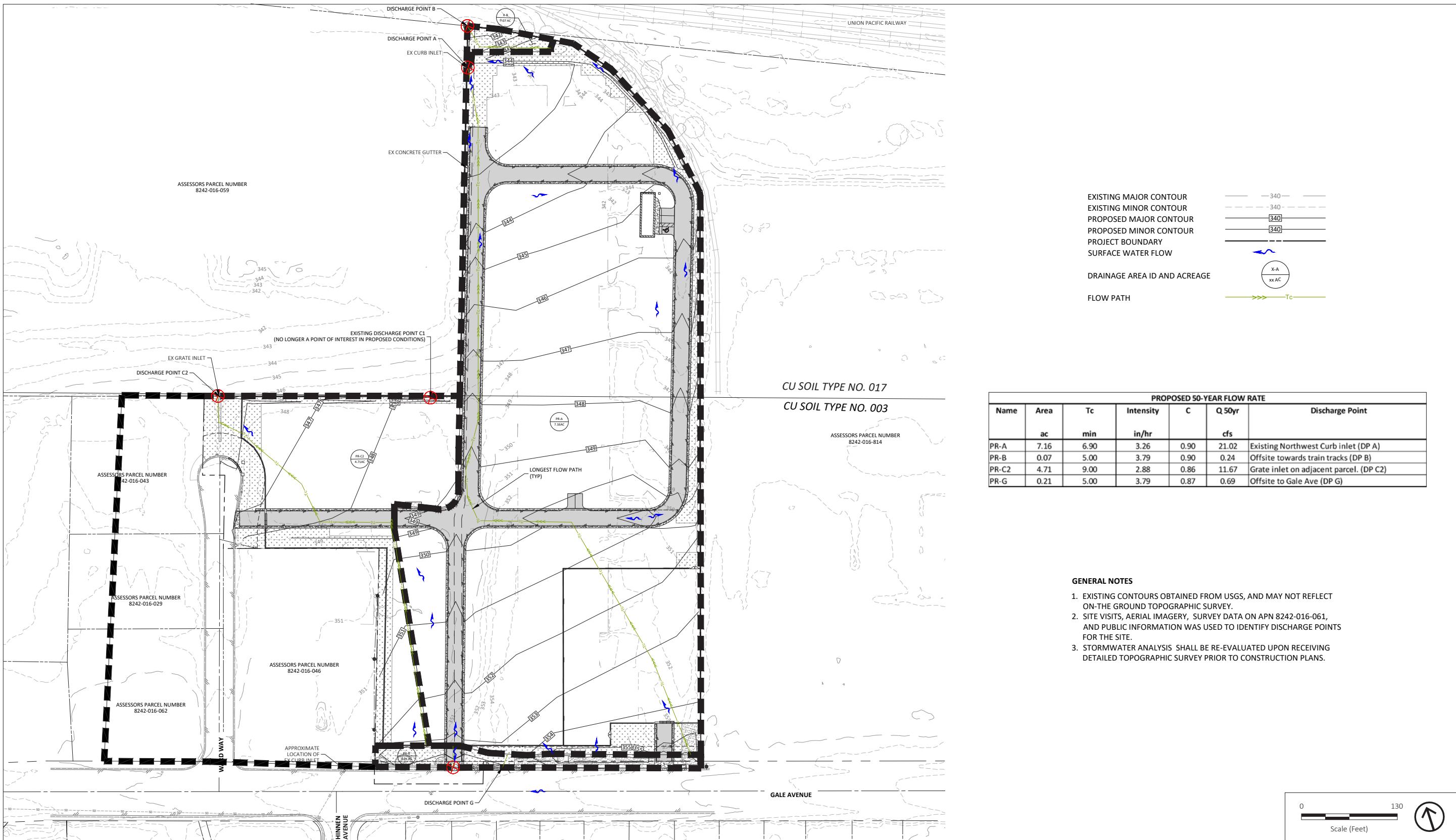
According to the LID Standards Manual, the proposed Project is a designated project defined as redevelopment project adding 5,000 square feet or more of impervious surface on a site that was previously developed (LADPW 2014). Mitigation for designated projects includes retaining 100 percent of the stormwater quality design volume (SWQDv)⁴ onsite through infiltration, evapotranspiration, stormwater runoff harvest and use, or a combination thereof.

⁴ The design storm, from which the SWQDv is calculated, is defined as the greater of the 0.75-inch, 24-hour rain event or the 85th percentile, 24-hour rain event, as determined from the Los Angeles County 85th percentile precipitation isoheytal map.

3. ENVIRONMENTAL CHECKLIST

Under the proposed project the Project Site would be split up into four drainage areas that would flow into four separate discharge points. The proposed stormwater design consists of an underground storm drain system, curb and gutters, and open vegetated ditches.

As shown in Figure 10, *Proposed Drainage Area Maps*, the drainage areas are identified as A, B, C, and G. Drainage Area A would be 7.53 acres of the Project Site and sheet flow to the northern corner of the Project Site before connecting to an existing northwest curb inlet. Drainage area A would have a pretreatment device that would be designed per the LACDPW's LID Standards Manual. Discharge area B would be 0.07 acres and flow offsite towards the train tracks in the northern corner of the project site. Discharge area C would be 4.35 acres and flow to the western edge of the Project Site into a grate inlet on the adjacent parcel to the Project Site. Discharge area G would be 0.21 acres and flow southwest offsite along Gale Avenue.


The project developer would prepare and submit a standard urban stormwater mitigation plan (SUSMP), which would include applicable LID requirements in the MS4 permit and Low Impact Development Standards Manual. The proposed Project would be designed to control pollutants, pollutant loads, and runoff volume to the maximum extent feasible by minimizing impervious surface area and controlling runoff from impervious surfaces through infiltration, evapotranspiration, bioretention, and/or rainfall harvest and use. The final BMPs to be implemented for the proposed Project, including the proposed pretreatment device, would be determined through the City's review of the SUSMP, which would occur during the City's development review and building plan check process.

The BMPs incorporated into future project development would mitigate at a minimum the first flush or the equivalent of the greater between the 85th percentile storm and first 0.75-inch of rainfall for any storm event.⁵ The installed BMP systems would be designed with an internal bypass or overflow system to prevent upstream flooding due to large storm events. Furthermore, the SUSMP would include the following information:

- Feasibility of infiltrating captured stormwater at the project site.
- Source control measure(s) proposed to be implemented.
- Calculation of the volume of stormwater that needs to be treated on the project site.
- Discussion on whether stormwater runoff harvest and use are feasible.
- Stormwater quality control measure(s) proposed to be implemented and sizing calculations.

⁵ Stormwater quality control measures are designed to handle the frequent, smaller storm events or the initial volume of stormwater runoff from larger storm events (typically referred to as first-flush events). The first flush of larger storm events is the initial period of the storm where stormwater runoff typically carries the highest concentration of pollutants. Small, frequent storm events represent most of the total annual average precipitation in the county.

Source: TRC 2025.

Figure 10
Proposed Drainage Area Maps

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

This page intentionally left blank.

3. ENVIRONMENTAL CHECKLIST

- Proposed hydromodification controls and calculations (if necessary).⁶
- Proposed maintenance plan (if necessary).

Additionally, the proposed project would incorporate into the project plans a stormwater mitigation plan, including the BMPs necessary to control stormwater pollution from facility operations as set forth in the SUSMP. Structural or treatment control BMPs in project plans would meet the design standards in the SUSMP and MS4 permit. The project developer would also provide verification of maintenance provisions for treatment and structural control BMPs.

The proposed Project would comply with all state, county, and local regulations regarding stormwater runoff during the operational phase, which would ensure that water quality standards and waste discharge requirements would not be exceeded, and surface water and groundwater quality would not be degraded. Therefore, operation of the proposed project would not be expected to violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality, and impacts would be less than significant, and no mitigation measures are necessary.

b) Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?

The Project Site is over the Main San Gabriel Valley Groundwater Basin (Main Basin). Suburban Water Systems (SWS) currently provides water service to the Project Site. SWS's water supply sources include groundwater pumped from the Main Basin and Central Basin and can purchase treated surface and groundwater from Covina Irrigation Company, treated groundwater from Cal Domestic. Furthermore, SWS purchases water imported by MWD through its MWD member agencies: Central Basin Municipal Water District (CBMWD), Upper San Gabriel Valley Municipal Water District (USGVMWD), and Three Valleys Municipal Water District (TVMWD) (SWS 2021).

SWS estimates that water demand in its service area for normal years would increase from approximately 1,402,000 acre-feet per year (afy) in 2025 to approximately 1,457,000 afy in 2045. SWS forecasts that it will have sufficient water supplies to meet water demands in its service area for normal, single dry, and multiple dry years. Operation of the proposed Project would result in a decrease in water demand because the existing conditions at the Project Site have a higher water demand than the proposed conditions at the Project Site.

⁶ Hydromodification means the change in the natural hydrologic processes and runoff characteristics due to land use changes that result in increased stream flows and changes in sediment transport, thus affecting water quality in natural waterways.

3. ENVIRONMENTAL CHECKLIST

The groundwater in the site vicinity is anticipated to be encountered at a depth of approximately 19 fbg⁷ (Appendix K). Depending upon the depth of excavation and seasonal conditions, groundwater may be encountered within the excavations planned on the Project Site. Should construction activities require dewatering, the SGMP (Appendix K) identifies that it is the responsibility of the general contractor and/or its subcontractors to obtain the necessary permits and equipment to conduct any dewatering activities that might be needed (refer to Section X.a).

Furthermore, the Project Site is not in or near a groundwater recharge area/facility, nor does the proposed Project represent a source of groundwater recharge (LADPW 2025).

Therefore, implementation of the proposed Project would not substantially interfere with groundwater supplies or recharge. Impacts would be less than significant, and no mitigation measures are necessary.

c) *Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:*

i. Result in substantial erosion or siltation on- or off-site?

Erosion and siltation impacts potentially resulting from the proposed Project's alteration of the drainage pattern would, for the most part, occur during the proposed Project's construction phase, which would include site preparation and grading activities. Environmental factors that affect erosion include topography, soil and wind and rainfall characteristics. Siltation is most often caused by soil erosion.

Following is a discussion of the potential erosion and siltation impacts that could occur during the construction and operational phases of the proposed Project.

Project Construction

As discussed in Section X.a, the proposed Project's construction contractor would be required to prepare and implement a SWPPP pursuant to the CGP during grading and construction at the Project Site. The SWPPP would specify erosion- and sediment-control BMPs that the project construction contractor would implement prior to and during grading and construction to minimize erosion and siltation impacts on- and off-site. Erosion-control BMPs are designed to prevent erosion, and sediment controls are designed to trap or filter sediment once it has been

⁷ According to the Geotechnical Engineering Report prepared for the proposed Project (Appendix D), groundwater was encountered at depths ranging between approximately 21 and 26 fbg in on-site borings performed in December 2024. Groundwater levels fluctuate due to seasonal variations in the amount of rainfall, runoff, and other factors.

3. ENVIRONMENTAL CHECKLIST

mobilized. BMPs that would be implemented during the proposed Project's construction phase are discussed in detail in Section X.a.

Adherence to the BMPs in the SWPPP would reduce, prevent, or minimize soil erosion from project-related grading and construction activities. The construction-phase BMPs would also ensure effective control of sediment discharge and pollutants associated with sediments (e.g., nutrients, heavy metals, and certain pesticides). Therefore, Project-related construction activities would not result in substantial erosion or siltation on- or off-site. Construction-related impacts would be less than significant, and no mitigation measures are necessary.

Project Operation

Under the proposed Project, there would be no bare or disturbed soil at the Project Site at project completion that would be vulnerable to erosion or siltation. The surface of the Project Site would be covered with the BESS enclosures, an on-site collector substation, a tie-line and associated infrastructure, an interior paved access road, file lanes, parking spaces, hardscaping, and native landscaping. Landscaping would include deciduous trees, street trees, shrubs, grasses, meadows, and ground cover.

The proposed Project would not substantially alter the existing drainage pattern of the Project Site and would not alter the course of a stream or a river. The proposed Project would abide by the requirements of the MS4 permit and the LID Standards Manual.

Project development would also be required to comply with the standards of Chapter 13.16, Stormwater and Urban Runoff Pollution Control, of the Industry Municipal Code, which prohibits the discharge of specific pollutants into storm drains and requires development projects to implement permanent BMPs on individual sites to reduce pollutants in stormwater. Therefore, Project development would not substantially alter the existing drainage pattern of the Project Site or surrounding area in a manner that would result in substantial erosion or siltation on- or off-site.

Therefore, operation-related impacts would be less than significant, and no mitigation measures are necessary.

ii. Substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or offsite?

As detailed in the proposed Project's Hydrology Study and Stormwater Quality Management Plan (Appendix P), the proposed Project would result in a decrease of 4.54 acres of impervious surfaces at the Project Site when compared to existing conditions.

Figure 10 shows the drainage areas under proposed conditions and the four proposed discharge points. As shown in Table 9, for the 50-year storm peak flow runoff flow at

3. ENVIRONMENTAL CHECKLIST

Discharge Point A would decrease by 0.04 cubic feet per second (cfs) when compared to the existing flow. At Discharge Point B, the flow would remain the same between existing and proposed conditions. At Discharge Point C1, the proposed flow would decrease by 5.43 cfs when compared to the existing flow. At Discharge Point C2, the proposed flow would decrease by 1.73 cfs when compared to the existing flow. At Discharge Point G, the flow would remain the same between existing and proposed conditions. Therefore, the proposed project would reduce post development peak flows to below pre-development peak flows. Pervious surfaces at the Project Site would include trees, shrubs, grass, meadow and ground cover.

Table 9 50-year Storm Peak Flow Summary

Discharge Point	Existing Flow (cfs)	Proposed Flow (cfs)	Difference (cfs)
A	21.15	21.11	-0.04
B	0.24	0.24	0.00
C1	5.43	0.00	-5.43
C2	13.32	11.59	-1.73
G	0.69	0.69	0.00
Total	40.83	33.63	-7.2

Source: Appendix P.

Based on the preceding, development of the proposed Project would reduce the rate or amount of surface runoff in a manner which would result in reduced flooding on- or off-site. Therefore, no impact would occur, and no mitigation measures are necessary.

iii. Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

The proposed Project's impacts on the capacity of storm drainage systems would be less than significant, as substantiated in Section X.c.ii. Post development 50-year storm peak flows are less than predevelopment flows due to less impervious area. No mitigation measures are necessary.

iv. Impede or redirect flood flows?

3. ENVIRONMENTAL CHECKLIST

The Project Site is not in a 100-year flood hazard zone or a dam breach inundation zone (FEMA 2008; Industry 2014). Therefore, no impact on flood flows would occur, and no mitigation measures are necessary.

d) In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?

As noted in Section X.c.iv, the Project Site is not in a 100-year flood zone or dam breach inundation zone.

A seiche is an oscillating surface wave in a restricted or enclosed body of water, generated by ground motion, usually during an earthquake. Seiches are of concern for water storage facilities because inundation from a seiche can occur if the wave overflows a containment wall, such as the wall of a reservoir, water storage tank, dam, or other artificial body of water. The closest enclosed water body to the Project Site is the Main Street reservoirs operated by La Puente Valley County Water District, which is approximately 0.8 miles to the northeast (LPVCWD 2017). Due to the distance, the reservoir would not pose a flood hazard due to a seiche.

Tsunamis are a type of earthquake-induced flooding produced by large-scale sudden disturbances of the sea floor. Tsunami waves interact with the shallow sea floor when approaching a landmass, resulting in an increase in wave height and a destructive wave surge into low-lying coastal areas. The Project Site is approximately 27 miles inland from the Pacific Ocean and therefore outside the tsunami hazard zone. Therefore, the Project Site would not be affected by a tsunami.

Based on the preceding, the proposed Project would not release pollutants as the result of floods, tsunami, or seiches. Therefore, no impact would occur, and no mitigation measures are necessary.

e) Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?

Water quality in the City is regulated by the Los Angeles RWCQB and its Basin Plan for the Coastal Watersheds of Los Angeles and Ventura counties. The Basin Plan contains water quality standards and identifies beneficial uses for receiving waters (wildlife habitat, agricultural supply, fishing, etc.) and the water quality criteria and standards necessary to support these uses, consistent with federal and state water quality laws. As substantiated in Section X.a, the proposed Project would not violate any water quality standards and therefore would not obstruct the implementation of the Basin Plan.

Additionally, the Project Site is in the Main San Gabriel Groundwater Basin, which is categorized as a very low priority basin (DWR 2025). The Sustainable Groundwater Management Act requires only medium- and high-priority basins to form groundwater sustainability agencies, develop groundwater sustainability plans, and manage groundwater for long-term sustainability. The Main San Gabriel Groundwater Basin does not require a groundwater sustainability plan. As also

3. ENVIRONMENTAL CHECKLIST

substantiated in Section X.b, all activities associated with the proposed Project would not decrease groundwater supplies or interfere substantially with groundwater recharge.

Therefore, impacts would be less than significant, and no mitigation measures are necessary.

XI. Land Use and Planning

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Physically divide an established community?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
b) Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

DISCUSSION

a) *Physically divide an established community?*

Development of the proposed Project on the Project Site would not introduce a new land use that would disrupt existing land use patterns, nor would it introduce a physical barrier that would separate land uses that are not already separated. The proposed Project would be developed within the confines of the Project Site. The proposed Project would not introduce roadways or other infrastructure improvements that would bisect or transect the surrounding uses. The proposed Project would utilize the existing circulation routes in the surrounding area. Access to the Project Site would continue to be from Gale Avenue and Ward Way via existing driveways. Access to the surrounding uses and properties would also not be interrupted as a result of Project development since surrounding uses and properties do not have to cross the Project Site to access any property surrounding the site. Development of the proposed Project would not physically change the surrounding street patterns or otherwise impede movement through the surrounding areas. Therefore, no impact would occur, and no mitigation measures are necessary.

3. ENVIRONMENTAL CHECKLIST

b) Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?

General Plan Consistency

The General Plan land use designation for the Project Site is Employment. According to the Employment land use designation, the designation allows for a variety of businesses including industrial manufacturing, assembly, printing, machining, milling, welding, research and development, distribution, warehousing, storage, and supporting office uses. As the Project Site would be developed with the proposed Project, which is considered an industrial use, the proposed Project would be consistent with the City's General Plan as the Employment designation allows for a variety of businesses that are industrial in nature.

Therefore, project implementation would not conflict with the Industry General Plan. No land use impact related to general plan consistency would occur and no mitigation measures are necessary.

Zoning Consistency

The Project Site's zoning designation is Industrial (M). The Industrial zoning designation does not permit the development and operation of BESS facilities. Development of the proposed BESS facility on the Project Site does not include or require a change in the zoning designation of the Project Site (e.g., through an amendment to the site's zoning designation from one zone to another); however, a zone text amendment to list BESS facilities as a use permitted through City approval of a CUP in the Industrial zone is required. With approval of the zone text amendment, development of the proposed BESS facility would be consistent with the Industrial zoning designation.

Through the City's development review process—which includes both Industry Planning Commission and City Council review and consideration of the CUP—the City would ensure that approval of the CUP would not conflict with any applicable land use plan, policies, or regulations that have been adopted for the purpose of avoiding or mitigating an environmental effect. In determining the appropriateness of the proposed Project's CUP, the City's Planning Department and Planning Commission, and City Council would review the CUP's conformance with the objectives and requirements of the Industry Municipal Code (including Title 17, Zoning); consistency with the Industry General Plan and any potential effect to the public health, safety and welfare, and traffic effects; and general compliance with the development standards of Title 17.

Furthermore, Project development would not require a variance or any adjustments from the Title 17 standards, which help ensure that development projects are designed and implemented in a manner that is not detrimental to the Project Site or its surroundings. The proposed Project has been designed and would be developed in accordance with all applicable development and

3. ENVIRONMENTAL CHECKLIST

design standards of Title 17, including those related to setbacks, walls and screening, landscaping, and parking. Compliance with the applicable development and design standards would be ensured through the City's development review process.

Therefore, project implementation would not conflict with the Industry Municipal Code. Land use impacts related to zoning consistency would be less than significant and no mitigation measures are necessary.

XII. Mineral Resources

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Result in the loss of availability of a known mineral resource that would be a value to the region and the residents of the state?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

DISCUSSION

a) *Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?*

Pursuant to the mineral land classifications of the California Geologic Survey, the Project Site is not located in a mineral resource zone (CGS 2010). No mineral resource areas that would be of value to the region and residents of the state exist on or near the Project Site. Additionally, no locally important mineral resource recovery sites are on or near the Project Site. The Project Site is also not in an area with active mineral extraction operations, nor do they support such operations.

According to the Division of Mine Reclamation, there are no mines on or near the Project Site (DOC 2016). Mining would be incompatible with the surrounding uses and is not a permitted use under the City of Industry General Plan (General Plan) and zoning designations of the Project Site, which is in a highly urbanized area and surrounded mainly by industrial uses.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Furthermore, no mining sites are designated in the General Plan, and the nearest mine to the Project Site mapped on the Mines Online website is over 5 miles away (DMR 2022).

Finally, no oil or energy extraction and/or generation activities exist on the Project Site. A review of California Geologic Energy Management Division's well finder indicates that there are no oil or energy wells located on or within proximity of the Project Site (CalGEM 2022).

Therefore, no impact of a known mineral resource would occur, and no mitigation measures are necessary.

b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?

See response to Section XII.a, above. As substantiated in this section, no impact related to loss of locally important mineral recovery sites would occur and no mitigation measures are necessary.

XIII. Noise

Would the project result in:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
b) Generation of excessive groundborne vibration or groundborne noise levels?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
c) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

3. ENVIRONMENTAL CHECKLIST

The analysis in this section is based in part on the following technical study, which is included as Appendix Q to this Initial Study. Additional information on noise and vibration fundamentals and applicable regulations is contained in Appendix Q.

- *Sound Impact Assessment*, TRC, September 2025.

As shown in Figures 3, *Aerial Photograph*, the Project Site is in a highly urbanized area of Industry and is surrounded by mostly industrial uses.

Regulatory Setting

City of Industry General Plan

The City of Industry General Plan addresses noise in Section 4.2.6 of its Safety Element. According to the Land Use Compatibility figure of the City's General Plan, the normally acceptable CNEL for office and commercial land uses is 70 CNEL (dBA) range. The conditionally acceptable CNEL for office and commercial land uses is the 68-78 CNEL (dBA) range. In addition, the Industry General Plan states that public noise nuisances are regulated by Chapter 1.30 (Public Nuisances) of the Industry Municipal Code.

City of Industry Municipal Code

Chapter 1.30 (Public Nuisances) of the Industry Municipal Code does not contain noise standards applicable to warehouse or industrial uses. Other sections of the Industry Municipal Code restrict noise in City parks and noise from entertainment uses, wireless telecommunication facilities, and recycling facilities, but do not contain regulations applicable to the proposed Project. The Industry Municipal Code does not restrict construction noise levels or the time frame of construction activity and rather relies on the County of Los Angeles noise ordinance for environmental noise assessments.

Los Angeles County General Plan

The Noise Element of the Los Angeles County General Plan addresses noise mitigation regulations, goals, and policies for unincorporated portions of the county such as the Hacienda Heights community, the nearest residential uses to the Project Site (see Figure 3, *Aerial Photograph*). Los Angeles County General Plan policies are not applicable to the proposed Project.

Los Angeles County Code of Ordinances

Construction Noise

Section 12.08.440, *Construction Noise*, of the Los Angeles County Code of Ordinances (County Code) prohibits construction that would create a noise disturbance across a residential or

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

commercial real-property line from 7:00 p.m. to 7:00 a.m. on weekdays and at any time on Sundays or holidays. Construction noise is additionally addressed in Section 12.12.030, *Construction Noise Prohibited When*, which prohibits disturbing noise near residential occupancies between 8:00 p.m. and 6:30 a.m. on any day, and all day on Sunday. For the noise study conducted for the proposed Project, the more recent and restrictive 7:00 a.m. to 7:00 p.m. noise standard was applied, and it was assumed that construction on Saturdays is permissible. Section 12.12.030 also establishes maximum construction noise levels at various receiving land uses. During the specified daytime weekday hours, the maximum hourly noise level for single-family residences is 75 dB Leq for mobile equipment, and for stationary equipment the maximum noise hourly level is 60 dB Leq. The maximum noise level at multifamily residential structures is 80 dB Leq for mobile equipment and 65 dB Leq for stationary equipment.

Operational Noise

Section 12.08.390, Exterior Noise Standards, of the County Code establishes maximum exterior noise levels that shall not be exceeded within a designated noise zone, which are shown in Table 14. Section 12.08.390 also provides adjustments for the length of time a noise level occurs, also included in Table 10.

Table 10 Los Angeles County Noise Control Ordinance Standards

Noise Zone	Land Use Receptor Property	Time	Exterior Noise Standard (dB)				
			L50	L25	L8.3	L1.7	Lmax
I	Noise-Sensitive Area	Anytime	45	50	55	60	65
II	Residential Properties	7 a.m. to 10 p.m. (Daytime)	45	50	55	60	65
		10 p.m. to 7 a.m. (Nighttime)	50	55	60	65	70
III	Commercial Properties	10 p.m. to 7 a.m. (Nighttime)	55	60	65	70	75
		7 a.m. to 10 p.m. (Daytime)	60	65	70	75	80
IV	Industrial Properties	Anytime	70	75	80	85	90

Source: Los Angeles County Noise Control Ordinance, Exterior Noise Standards, Section 12.08.390.

Notes: LN represents the noise level that is exceeded for N percent of a period of time, e.g., L25 is the noise level that is exceeded 25 percent of the time measured.

3. ENVIRONMENTAL CHECKLIST

Operational Vibration

County Code Section 12.08.020, Declaration of Policy—Nuisances Deemed Misdemeanors, defines the level of human perception for groundborne vibration as a peak particle velocity (PPV) of 0.01 inch per second over the range of 1 to 100 hertz and prohibits the operation of devices that create vibration above this level for an individual at or beyond the property boundary. This standard is not applicable to construction activities, and the Los Angeles County General Plan EIR addressed construction vibration with the Federal Transit Administration guidelines (Los Angeles County 2014).

Caltrans Groundborne Vibration Criteria

When construction equipment travels over unpaved surfaces or engages in soil movement, construction activities generate groundborne vibration. The effects of groundborne vibration include the discernible movement of building floors, rattling of windows, shaking of items on shelves or hanging on walls, and rumbling sounds. Vibration-related problems generally occur due to resonances in the structural components of a building because structures amplify groundborne vibration. The “soft” sedimentary conditions of much of southern California dampen groundborne vibration over a relatively short distance.

Groundborne vibration from construction activities rarely reaches levels that can damage structures. Although there are no officially adopted regulatory standards for the point at which groundborne vibration levels could cause structural damage, Caltrans provides vibration guidelines for structural damage, which are provided in Table 11.

Table 11 Vibration Damage Criteria

Structure and Condition	Maximum PPV (in/sec)	
	Transient¹	Transient²
Extremely fragile historic buildings	0.12	0.08
Fragile buildings	0.2	0.1
Historic and some old buildings	0.5	0.25
Older residential structures	0.5	0.3
New residential structures	1.0	0.5
Modern industrial/commercial buildings	2.0	0.5

Source: Caltrans 2020.

Notes: PPV = peak particle velocity; in/sec = inches per second

¹ Sources creating a single isolated vibration event, such as blasting or drop balls.

² Frequent or intermittent sources include impact or vibratory pile drivers, pogo-stick compactors, crack-and-seat equipment, and vibratory compaction equipment.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

As shown in Table 2, the criteria for structural vibration damage are 0.5 PPV in/sec for modern industrial/commercial structures for intermittent sources and 0.3 PPV in/sec for older residential structures for intermittent sources, which are the standards that were used for the vibration analysis contained herein.⁸

Existing Conditions

Sensitive Uses

The nearest sensitive land uses to the Project Site are the residential areas immediately south of the Project Site along Gale Avenue and Folger Street. The closest of these residences is approximately 130 feet south of the Project Site, as shown in Table 12. The land uses to the north, east, and west are predominantly industrial and commercial and are not considered areas of sensitive land use.

Table 12 Closest Noise-Sensitive Receptors

Noise-Sensitive Receptor	Description	Approximate Distance from Project Site to Receptor
1	Residence	600
2	Residence	340
3	Residence	180
4	Residence	200
5	Residence	260
6	Residence	150
7	Residence	130
8	Residence	140
9	Residence	130
10	Residence	140
11	Residence	140
12	Residence	150
13	Residence	190
14	Residence	240
15	Residence	290

Source: Appendix Q.

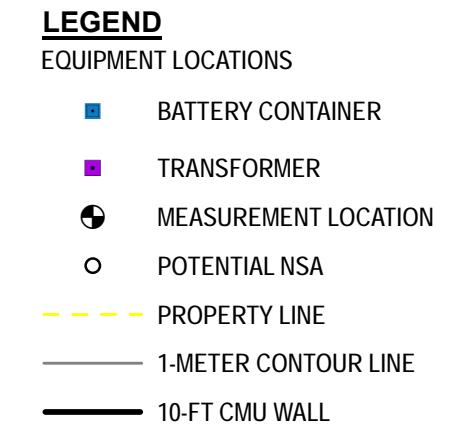
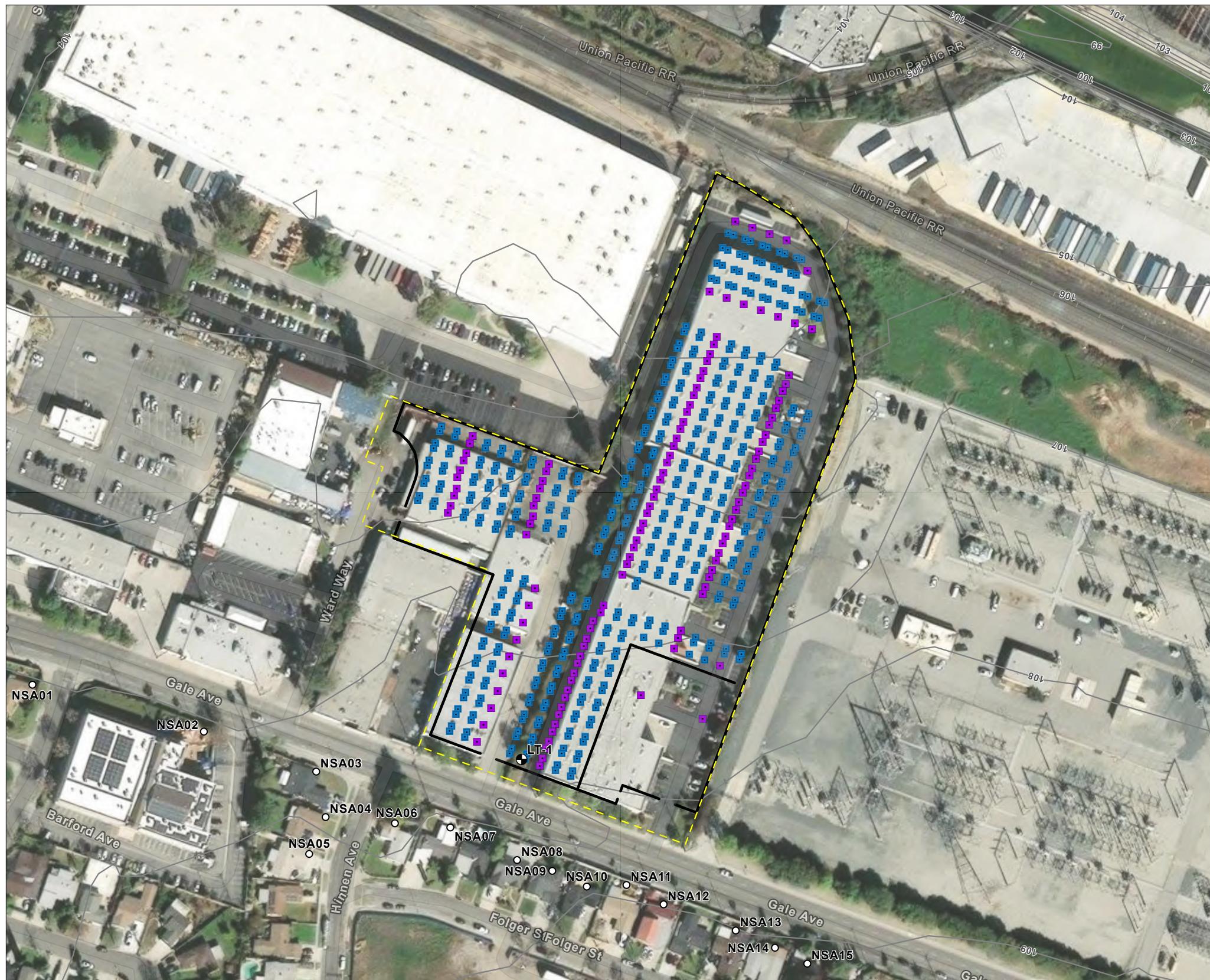
⁸ The Caltrans guidance manual does not explicitly define older residences, but provides example analyses that categorize residences constructed in the 1940s as “older.”

3. ENVIRONMENTAL CHECKLIST

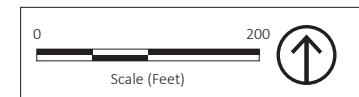
Ambient Noise Levels

Transportation systems are a primary source of urban noise. Management of noise from the most significant of these sources (aircraft, trains, and freeways) is generally preempted by federal and state authority. Primary municipal authority is regulation of land use. Management of noise emanating from freeways is generally within the authority of federal and state jurisdictions, namely, the Federal Highway Administration (FHWA) and Caltrans.

A long-term pre-construction ambient noise survey was conducted at the Project Site from August 20th to August 25th, 2025, to characterize the existing sound environment in the project area. The measurements were taken using a Larson Davis SoundExpert® LxT sound level meter that meets the requirements of the American National Standards Institute (ANSI) Standards for Type I instruments. The location of the measurements is shown in Figure 11, *Noise Measurement Locations*. The Leq measured at the Project Site during this period was 68.0 dBA while the L90 was 48.6 dBA.



DISCUSSION

a) *Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?*


The following analysis evaluates the potential noise levels resulting from the proposed Project during construction and operation. The analysis then considers whether these effects would exceed applicable standards and/or thresholds of significance based on Sections 12.08.440 and 12.08.390 of the County Code. The noise and vibration analysis presents quantitative estimates of the proposed Project's construction and operational noise generation to the surrounding environment, which consists of a mix of industrial, commercial, and residential land uses (see Figure 3, *Aerial Photograph*).

Construction Noise

Short-term, localized increases in sound levels are likely to occur during construction. Standard construction equipment will be used in the construction of the facility. To be conservative in the construction noise calculations, all Project construction equipment was included in the noise model as operating at the same time. The highest sound levels during construction are expected during the early earthmoving phase. Based on the proposed Project's equipment usage predictions, a sound level calculation was performed using the Federal Highway Administration's Roadway Construction Noise Model version 1.1 (FHWA 2006).

NOTES:
 1. BASE MAP IMAGERY, ESRI, 1/29/2024.
 2. DRAFT LAYOUT, TRC, 2/5/2025
 3. ELEVATION DATA, USGS 3DEP, 2024

Source: TRC 2025.

Figure 11
Noise Measurement Locations

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

This page intentionally left blank.

**MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY**

3. ENVIRONMENTAL CHECKLIST

Table 13 summarizes the results of the construction noise modeling for all the nearby receptor areas using the loudest construction phase. For construction noise modeling purposes, all equipment listed for each phase is assumed to be operating simultaneously at the nearest possible site location to each receptor group.

Table 13 Project Construction Noise Level Increases

Noise Sensitive Receptor Area	Noise Sensitive Receptor Number	Measured Ambient Sound Level (L90)	Max. Predicted Sound Level, Single Daytime Shift (dBA)	Combined Sound Level (dBA)
Group 1	1	48.6	79.4	79.4
Group 2	2	48.6	84.1	84.1
Group 3	3, 4, 13	48.6	86.9	86.9
Group 4	5, 14, 15	48.6	89.2	89.2
Group 5	6, 7, 8, 9, 10, 11, 12	48.6	91.7	91.7

Source: Appendix Q

Table 14 lists the predicted construction sound levels for each phase at each receptor group listed in Table 13. The highest modeled impacts occur during the equipment installation phase. The maximum impact is below the 75 dBA daytime residential threshold established by the County Code during the majority of construction.

Table 14 Construction Noise Levels by Construction Activity

Construction Phase	Schedule	Sound Level (Leq) at Receptor Group				
		Group 1	Group 2	Group 3	Group 4	Group 5
Demolition Phase 1	Month 1	60.6	65.3	68.2	70.4	72.9
Demolition Phase 2	Month 2	61.7	66.5	69.3	71.6	74.1
Demolition Phase 3	Month 3	61.7	66.5	69.3	71.6	74.1
Site Prep	Month 4	60.7	65.5	68.3	70.6	73.1
Grading	Month 5	60.9	65.6	68.4	70.7	73.2
Drilling	Month 6.5	50.3	55.0	57.8	60.1	62.6
Foundations	Month 6-9	59.5	64.2	67.0	69.3	71.8
Collector Substation Prep	Month 7-12	57.0	61.7	64.5	66.8	69.3
Crane Work	Month 8	50.7	55.4	58.3	60.6	63.0
Equipment Installation	Month 8-11	79.4	84.1	86.9	89.2	91.7

3. ENVIRONMENTAL CHECKLIST

Table 14 Construction Noise Levels by Construction Activity

Construction Phase	Schedule	Sound Level (Leq) at Receptor Group				
		Group 1	Group 2	Group 3	Group 4	Group 5
Trenching	Month 9-10	58.0	62.7	65.6	67.8	70.3
Tie Line Install	Month 12	45.8	50.6	53.4	55.7	58.2
Pave/Surface/Landscape	Month 12	57.3	62.0	64.8	67.1	69.6

Source: Appendix Q

As shown above, the proposed Project would result in moderate temporary increases in sound levels at the nearby sensitive receptor areas during Project construction activities. The proposed Project would comply with County Code Section 12.08.440, Construction Noise; however, construction noise would exceed thresholds and be potentially significant. The proposed Project would implement Mitigation Measure NOI-1 requiring the use of sound control devices on construction equipment, which would further ensure noise levels during construction are reduced.

Mitigation Measure NOI-1: The construction contractor shall limit construction activities to between the hours of 7:00 a.m. and 7:00 p.m. on weekdays, as required by the Los Angeles County Code 12.08.440, Construction Noise. Construction is prohibited outside these hours during weekdays and anytime on weekends. The construction contractor shall also implement the following best practices:

- Utilize sound control devices no less effective than those provided by the manufacturer.
- Maintain equipment in accordance with the manufacturer's recommendations.
- No equipment will have unmuffled exhausts.
- Equipment idling will be kept to a minimum.

Compliance with the County Code and Mitigation Measure NOI-1 would ensure that the proposed Project would not result in generation of a substantial temporary or permanent increase in ambient noise levels in excess of applicable noise ordinances. Therefore, impacts would be less than significant with mitigation.

Operational Noise

The primary noise-producing sources on the site during Project operation would be the BESS containers and medium-voltage transformers, as well as two substation step-up transformers. A

3. ENVIRONMENTAL CHECKLIST

total of 480 BESS containers and 120 transformers are proposed throughout the site. Two additional 34.5/220 kV station service transformers would be located within the substation in the southeast portion of the site. The location of these sources is shown in Figure 12, *Noise Generating Project Features*. The Cadna-A® noise model was used to predict future sound levels resulting from the operation of the proposed BESS containers and associated equipment at the property line.

The source model inputs and locations were based on proposed electrical equipment specifications in design drawings by TRC dated February 5, 2025. The sound power level for the proposed battery containers, the Sungrow PowerTitan 2.0, is 75 dBA according to manufacturer specifications. The sound level for the transformer units, the Sungrow MVS5000-LV-US, is not listed in manufacturer specifications, so the modeled sound levels are based on a generic 5,140 kVA, 2-winding, KNAN transformer. The noise levels of the proposed Project's infrastructure are shown in Table 15, *Noise Source Impacts*. Since the sound-producing equipment were assumed to be continuously operating, the L90 (background level) and Leq (equivalent constant level) of the proposed equipment are the same for the purposes of this assessment.

Table 15 Noise Source Inputs

Equipment	Source Height (meters)	dBA
Transformers (120)	1.2	77
Substation Transformer (2)	1.2	62
Battery Containers (480)	1.4	75

Source: Appendix Q

Note: Heights based on component dimensions and mounting orientation, assumed pad-mounted equipment. Source levels are extrapolated from manufacturer-provided or generic sound pressure level specifications.

Cadna-A® allows the user to place receptors at selected locations and predicts sound levels at those specific receptor locations. For this analysis, specific receptors were placed at the closest exterior walls of the nearest residential receptors, listed in Table 16. The model also calculated sound levels for the surrounding area, using a 10-foot receptor grid, with a receptor height of 5.1 feet (representative of average ear height). This data is displayed in the isopleths⁹ in Figure 12, which show lines of equal sound level at the site and the surrounding area.

Table 16 lists the steady-state, A-weighted sound level results at each modeled receptor, along with the calculated increase over the ambient sound level (assumed to be the measured L90 value). These results take into account the terrain of the area and a 10-foot-high masonry perimeter wall as shown in Figure 4a, *Proposed Site Layout*. The model assumed continuous and

⁹ An isopleth is a line on a map connecting points having equal incidence of a specified meteorological feature.

3. ENVIRONMENTAL CHECKLIST

simultaneous operation of all sound-producing equipment. This was a conservative assumption, since not all equipment will be operating continuously at full load.

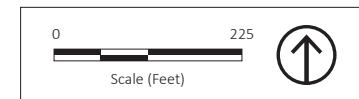
Table 16 Operational Noise Levels at Receptor Locations

Noise Sensitive Receptor	Sound Level (dBA)			
	Modeled	Ambient	Combined	Increase
1	36.6	48.6	48.9	0.3
2	39.1	48.6	49.1	0.5
3	41.1	48.6	49.3	0.7
4	40.9	48.6	49.3	0.7
5	40.1	48.6	49.2	0.6
6	43.0	48.6	49.7	1.1
7	44.1	48.6	49.9	1.3
8	43.0	48.6	49.7	1.1
9	42.1	48.6	49.5	0.9
10	41.1	48.6	49.3	0.7
11	40.5	48.6	49.2	0.6
12	39.9	48.6	49.1	0.5
13	38.9	48.6	49.0	0.4
14	38.3	48.6	49.0	0.4
15	37.9	48.6	49.0	0.4

Source: Appendix Q

As shown in Table 16, the maximum predicted sound level from the proposed Project at nearby potential noise-sensitive locations is 44.1 dBA at receptor location 7, which when combined with the existing ambient noise level at this location, would be 49.9 dBA. The model assumes all sound sources are in continuous operation, so the Leq over any duration would be the same. Overall, the proposed Project would generate a maximum 1.3 dBA increase, which is considered to be imperceptible to the human ear. These noise levels would not exceed the maximum exterior noise levels of any noise zone, per County Code Section 12.08.390, Exterior Noise Standards (see Table 10, *Los Angeles County Noise Control Ordinance Standards*).

LEGEND
EQUIPMENT LOCATIONS


- BATTERY CONTAINER
- TRANSFORMER
- MEASUREMENT LOCATION
- POTENTIAL NSAS
- PROPERTY LINE
- 10-FT CMU WALL

SOUND LEVEL (DBA)

- 25 - 30
- 35 - 40
- 45 - 50
- 55 - 60
- > 60

NOTES:

1. BASE MAP IMAGERY, ESRI, 1/29/2024.
2. DRAFT LAYOUT, TRC, 2/5/2025
3. CADNAA MODELING DATA, TRC, 2025

Source: TRC 2025.

Figure 12
Noise Generating Project Features

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

This page intentionally left blank.

3. ENVIRONMENTAL CHECKLIST

Furthermore, with respect to the proposed Project's interconnection at the adjacent Walnut Substation, no interconnection infrastructure to be installed within the Walnut Substation would be a material source of noise. Sound levels associated with transmission electrostatic effects (also known as "corona" effects) occur during precipitation events or very high humidity and generally are only discernable during very high humidity because the corona effect noise can be masked by the rainfall itself. Since corona effect noise is substantially quieter than the onsite noise sources of the proposed Project and is dependent on humid conditions that are not typical of the area, corona noise from the short electric tie-line is not expected to be routinely discernable.

Therefore, operational noise from the proposed Project would not increase ambient noise levels in excess of applicable noise ordinances. Impacts would be less than significant, and no mitigation measures are necessary.

b) Generation of excessive groundborne vibration or groundborne noise levels?

Construction Vibration

Vibration impacts during construction are assumed to be minor based on the preliminary list of construction equipment (Appendix Q). No rock blasting is anticipated, and all equipment that will have the potential to generate groundborne vibration, such as trucks and tracked construction vehicles, will be mobile/transient and used over short durations. Equipment is anticipated to be used within the interior of the site rather than along the property line on a frequent basis. Traffic along Gale Avenue and railroad activity in the vicinity may have more significant vibration impact than construction equipment.

The FTA Transit Noise and Vibration Impact Assessment Manual provides methodology and vibration reference levels for certain equipment. Specified by County Code Section 12.08.020, Declaration of Policy—Nuisances Deemed Misdemeanors, the highest estimated vibration level during construction is 0.006 in/sec at 150 feet, based on a large bulldozer with a reference PPV of 0.089 in/sec at 25 feet (FTA 2018). This level is below the 0.01 in/sec threshold established by the ordinance.

Therefore, vibration impacts during construction are expected to be minimal, and construction vibration impacts would be less than significant. No mitigation measures are necessary.

Operational Vibration

Operational vibration impacts for both the proposed Project would be similar to existing surrounding uses and would not include any sources of substantial groundborne vibration. Truck trips on paved roads are unlikely to generate substantial vibration levels and would be similar to existing and surrounding uses. Therefore, impacts associated with operational vibration would be less than significant and no mitigation measures are necessary.

3. ENVIRONMENTAL CHECKLIST

c) *For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?*

There are no public airports or private airfields within two miles of the Project Site, and the Project Site is far from any aviation traffic noise contour greater than 65 dBA CNEL. The nearest public airport is the San Gabriel Valley Airport, which is approximately 7 miles northwest of the Project Site. At this distance, implementation of the proposed Project would not expose people residing or working in the project area to excessive levels. Additionally, there is one government- and two private-operated helipads within the vicinity of the Project Site: these include the Los Angeles County Sheriff's station ground-level helipad at 150 Hudson Avenue (approximately 0.95 mile to the north), a private rooftop helipad of the Pacific Palms Resort at 1 Industry Hills parkway (approximately 1.65 miles to the northeast), and a private roof-top helipad at 450 Baldwin Park Boulevard (approximately 3.7 miles to the northwest)(AirNav 2025). One of the airstrips (Los Angeles County Sheriff's station ground-level helipad) is in proximity (less than one mile) of the Project Site; however, implementation of the proposed Project would not alter the flight path of this helipad that would increase safety hazards or noise levels in the vicinity of the Project Site. The proposed Project would not expose people on-site (during either the construction or operation phases) to excessive airport-related noise. No impact would occur no mitigation measures are necessary.

XIV. Population and Housing

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
b) Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

DISCUSSION

a) Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

The Project Site is in a developed industrial area of the City. No residential development is proposed under the proposed Project; therefore, the proposed Project would not directly induce population growth in Industry. The proposed Project would establish a new BESS facility that would benefit the City and Southern California Edison (SCE) economically by providing construction jobs, construction and maintenance services, and increased energy efficiency and reliability. The proposed Project would not require new infrastructure or extension of existing infrastructure that could indirectly induce population growth nearby. Therefore, no impact on population and housing would occur and no mitigation measures are necessary.

b) Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?

No housing exists on the Project Site, and it is currently developed with industrial uses a (see Figure 3, *Aerial Photograph*). Therefore, Project development would not displace housing or people. No impact would occur, and no mitigation measures are necessary.

XV. Public Services

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Fire protection?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Police protection?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Schools?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
Parks?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
Other public facilities?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

DISCUSSION

a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:

Fire protection?

The Los Angeles County Fire Department (LACoFD) provides fire protection and emergency medical services to the City of Industry, including the Project Site. Industry is served by Battalion 12 of LACoFD, which mans and operates six fire stations: Fire Stations 26, 43, 87, 91, 118, and 155. The nearest and first response fire station to the Project Site is Fire Station 43 at 921 South Stimson Avenue in Industry, which is approximately 800 feet west of the proposed Project. LACoFD also has mutual aid agreements with other fire departments in the county.

Development of the proposed Project could result in the need for fire protection and emergency medical services in the unlikely event of an emergency incident occurring at the BESS facility (e.g., fire, explosion). Implementation of the proposed Project is not anticipated to result in a need for fire protection and emergency medical services.

As discussed in Section IX, *Hazards and Hazardous Materials*, BESS facilities are required to meet the requirements of the NFPA, which issues standards for addressing energy storage systems (NFPA 2022). The proposed Project's battery enclosures would be equipped with fire monitoring systems, controls, and cooling units to keep the batteries at optimal operating temperatures. The fire monitoring systems consist of smoke and heat sensors, gas detectors, alarms, remote monitoring, and an NFPA 69-compliant explosion prevention system. Each fire protection system would have a signal that would trigger core power-down during a fire, electrical fire, overheating, or other issues. The entire project power-down would occur automatically in the event of electrical fault conditions (e.g., high-voltage, high-frequency, ground fault). In addition, the proposed BESS facility would be equipped with breakers that could be opened manually to power down different equipment or the BESS facility.

3. ENVIRONMENTAL CHECKLIST

LACoFD is responsible for issuing required permits to BESS facilities and would be responsible for plan checking and approvals of the proposed Project's BESS facility. LACoFD has implemented additional permitting requirements to ensure fire safety related to proposed BESS facilities, which are detailed in Section IX.d.

Additionally, Project development would be required to adhere with all pertinent regulations outlined in the Los Angeles County Fire Code (Title 32 of the Los Angeles County Code), which is adopted by reference in the Industry Municipal Code, Chapter 15.28, Fire Code. The fire code imposes design standards and requirements that seek to minimize and mitigate fire risk. Project development would also be required to adhere to NFPA 855, which is the National Fire Protection Association standard for the Installation of stationary energy storage systems; it setting minimum safety requirements for battery systems. The City also involves LACoFD in the development review process in order to ensure that the necessary fire prevention and emergency response features are incorporated into development projects.

Additionally, in the event of an emergency that required more resources than Station 43 could provide, LACoFD would direct resources to the site from other nearby stations in Industry and, if needed, would request assistance from other nearby fire departments. Also, the Project Site is already served by LACoFD; therefore, the proposed Project would not result in an expansion of LACoFD's service area.

Further, as shown in Figure 4, *Proposed Site Layout*, emergency vehicle access to the Project Site would be provided via two driveways, one off Gale Avenue and the other off Ward Way. All site and structural improvements proposed under the proposed Project would be subject to review and approval by LACoFD prior to building permit issuance.

Based on the preceding, the proposed Project would not adversely affect LACoFD's ability to provide adequate service and would not require new or expanded fire facilities that could result in adverse environmental impacts. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

Police protection?

The Los Angeles County Sheriff's Department (LASD) provides police protection to Industry, including the Project Site. The nearest LASD station to the Project Site is the Industry Station at 150 North Hudson Avenue in Industry, approximately one mile to the north.

Implementation of the proposed Project is not anticipated to result in an increased demand for police protection services. The proposed BESS facility on the Project Site includes security measures and features that would help prevent needing to call for police services. For example, the Project Site would be secured on all sides via the provision of walls, fences, and controlled-access vehicular gates, which are illustrated in Figure 4, *Proposed Site Layout*,

3. ENVIRONMENTAL CHECKLIST

and Figure 6, *Substation Elevations*, to prevent access from the public and secure the site. As illustrated in the figures, the Project Site would be secured on all sides by block walls with security wiring on top. Limiting access to the Project Site would be necessary both to ensure the safety of the public and to protect the equipment from potential theft and vandalism.

Also, security lighting for the BESS facility on the Project Site would be provided from dusk until dawn. Permanent motion-sensitive, directional security lights would be installed on-site to provide adequate illumination around the substation area and points of ingress/egress. The proposed lighting system would provide operations and maintenance personnel with illumination for both normal and emergency conditions. Lighting would be designed to provide the minimum illumination needed to achieve safety and security objectives.

Additionally, the City involves LASD in the development review process in order to ensure that the necessary police protection features are incorporated into development projects. All site and structural improvements proposed under the proposed Project would be subject to review and approval by LASD.

Project implementation would not result in an increase in calls for police protection service. As described above, no new population would be located onsite daily, and the BESS facility includes various security measures, (e.g., fencing, cameras, lighting) to enhance public safety and secure the site. Considering the existing police resources available in and near Industry, project impacts on police services (including response times) are not expected to occur. LASD's staffing and equipment levels could sufficiently respond to any additional calls and responses that could be generated by the proposed Project. Additionally, in the event of an emergency that required more resources than LASD could provide, LASD would request assistance from other nearby police or Sheriff departments. The Project Site and Substation Area are also infill sites already served by LASD; therefore, the proposed Project would not result in an expansion of their service area.

Based on the preceding, the proposed Project would not adversely affect LASD's ability to provide adequate service and would not require new or expanded police facilities that could result in adverse environmental impacts. Therefore, impacts related to police services would be less than significant and no mitigation measures are necessary.

Schools?

The increase in student generation and the need for new or the expansion of existing school facilities is tied to population growth. The proposed Project is anticipated to have up to two employees on-site daily. This small increase in the daily employee population in the City would not result in a substantial increase in usage of local school facilities.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

Therefore, no impact related to schools would occur and no mitigation measures are necessary.

Parks?

The need for new or the expansion of existing parks is tied to population growth. No residential development is proposed under the proposed Project, and Project development would not generate a need for new or additional parks. Therefore, no impact related to library services or facilities would occur and no mitigation measures are necessary.

Other public facilities?

The need for new or the expansion of existing library services and other public facilities is tied to population growth. No residential development is proposed under the proposed Project, and Project development would not generate a need for new or additional library services or other public facilities. Therefore, no impact related to library services or other public facilities would occur and no mitigation measures are necessary.

XVI. Recreation

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

3. ENVIRONMENTAL CHECKLIST

DISCUSSION

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

The increase in the use of existing parks and recreational facilities and the need for new or the construction or expansion of existing recreational facilities is tied to population growth. No residential development is proposed as a part of the proposed Project. Additionally, it is anticipated that up to two employees would be present on the Project Site on a daily basis. It is likely that employees would live locally and therefore would not increase the usage of nearby recreational facilities. Therefore, no population growth or increase in the use of existing parks or other recreational facilities would occur. Therefore, no impact would occur, and no mitigation measures are necessary.

b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

The proposed Project does not involve the development of recreational facilities; and Project development would not require construction of new or expanded recreational facilities, as noted in Section XVI.a, above. Therefore, no impact would occur, and no mitigation measures are necessary.

XVII. Transportation

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
b) Conflict or be inconsistent with CEQA Guidelines § 15064.3, subdivision (b)?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
c) Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
d) Result in inadequate emergency access?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

3. ENVIRONMENTAL CHECKLIST

The analysis in this section is based partly on the following technical study, which is included as Appendix R to this Initial Study:

- Transportation Study, Fehr & Peers, May 2025.

DISCUSSION

a) *Conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?*

Following is a discussion of the proposed Project's potential impacts on a program, plan, ordinance, or policy addressing the circulation system and the evaluation was conducted by reviewing City documents related to transportation: the Industry General Plan Circulation Element and Title 17, Zoning, of the Industry Municipal Code.

Industry General Plan Circulation Element

The Industry General Plan Circulation Element outlines the City's plans to provide a transportation network system that allows the movement of people, goods, and services easily and safely throughout Industry. As stated in the Circulation Element, to enhance the value of existing businesses, attract new businesses, and stimulate new investment, the City must continue to improve its circulation systems to ensure they accommodate the desired level of growth, are functional and safe, and further the professional appearance desired in Industry. As such, the proposed Project would be a new business occupying a former businesses' site and would provide new investment to the City. Therefore, the proposed Project would not conflict with the City's General Plan.

Industry Municipal Code

Title 17, Zoning, of the Industry Municipal Code includes the development and design standards and regulations that constitute the zoning regulations that govern development and use of the Project Site and help implement the Industry General Plan. The Industry Municipal Code is the guiding document that contains the City's rules and regulations that apply to development. Generally, transportation-specific ordinances, standards or regulations that apply to the proposed Project would pertain to minimum parking requirements. The proposed Project would comply with any municipal code requirements.

Roadway Facilities

As stated in the Circulation Element, Industry's roadway system must provide convenient access and be safe, free-flowing, functional, and compatible with its surroundings. The roadway system must provide the necessary capacity to accommodate the traffic generated from future development. The street rights-of-way also need to accommodate pedestrians, bicyclists,

3. ENVIRONMENTAL CHECKLIST

landscaping, traffic control devices, and infrastructure in a manner that is safe and aesthetically pleasing.

As shown in Figure 4a, vehicular employee-only access to the Project Site would be provided from Gale Avenue via two driveways, which forms the Project Site's southern boundary, and via one driveway from Ward Way, which forms the Project Site's western boundary. The three driveways would provide access to the internal aisles and parking area.

Project development would not impact the functionality or use of Gale Avenue or Ward Way. Additionally, design and construction of the proposed driveways would be required to adhere to the City's Public Works Department's established standard plans and the standards outlined in the Industry Municipal Code, which are imposed on development projects during the City's development review and building plan check process. For example, at intersections and project driveways, a substantially clear line of sight must be maintained between the driver of a vehicle waiting at the crossroad and the driver of an approaching vehicle. Sight distance is the continuous length of roadway visible to the driver. Based on a review of aerial photography and Google maps, there are no restrictions blocking views from the locations of the proposed driveways and traffic along Gale Avenue or Ward Way, and sufficient sight distance would be provided. Compliance with the established design standards would ensure that hazards due to design features would not occur and that the placement of the vehicular access and circulation improvements would not create a conflict for motorists, pedestrians, or bicyclists traveling along Gale Avenue or Ward Way.

Additionally, during the construction phase of the proposed Project, the number of trips that would be generated during the peak construction period, specifically during the demolition phase, would be 163 daily trips. The construction phase would be from February 2026 to early 2027 and any impact on roadway facilities due to additional vehicles on the road would be temporary and all work during the construction phase would be limited to the confines of the Project Site. The operation phase would include two employees daily to conduct maintenance of the proposed BESS facility that would operate on the Project Site. As such, the permanent number of trips to the Project Site for maintenance would be negligible and would not substantially impact the roadway facilities in the vicinity.

Transit, Pedestrian, and Bicycle Access and Facilities

Public transit in the City is provided by Foothill Transit. Foothill Transit provides public transportation in the form of bus services and includes buses that serve the San Gabriel Valley, Pomona Valley, and downtown Los Angeles. The project area is served by Line 281 and Line 285. The nearest bus stops to the Project Site are Bus Stops 1393 and 2789 of Lines 281 and 285, located at the intersection of Hinnen Avenue and Gale Avenue, which is just south of the Project Site. The proposed improvements at the Project Site would not interfere with the existing public transit service or facilities as all improvements would occur within the confines of the Project Site. Furthermore, safe access to the aforementioned bus stops to and from the Project Site would be

3. ENVIRONMENTAL CHECKLIST

available to site maintenance employees (if needed) via the existing public sidewalk along Gale Avenue.

Under existing conditions there is no sidewalk along Ward Way, which forms the western site boundary; however, there is a public sidewalk along Gale Avenue, which forms the southern site boundary. Additionally, implementation of the proposed Project would not impact any bicycle facilities because no such facilities exist adjacent to or within the vicinity of the Project Site.

Conclusion

As demonstrated above, Project development would not conflict with any components of the Industry General Plan Circulation Element or the City's Municipal Code, nor would it preclude the City from implementing adopted programs, plans, and policies addressing the circulation system. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

b) Conflict or be inconsistent with CEQA Guidelines § 15064.3, subdivision (b)?

The legislature found that with adoption of Senate Bill 375, the state had signaled its commitment to encourage land use and transportation planning decisions and investments that reduce vehicle miles traveled and thereby contribute to the reduction of GHG emissions, as required by the California Global Warming Solutions Act of 2006 (Assembly Bill (AB 32)). Additionally, AB 1358 (Complete Streets Act) requires local governments to plan for a balanced, multimodal transportation network that meets the needs of all users.

On September 27, 2013, SB 743 was signed into law. SB 743 started a process that would fundamentally change transportation impact analysis as part of CEQA compliance. These changes include the elimination of auto delay, level of service (LOS), and other similar measures of vehicular capacity or traffic congestion as a basis for determining significant impacts in many parts of California (if not statewide). As part of the updated CEQA Guidelines, the new criteria "shall promote the reduction of greenhouse gas emissions, the development of multimodal transportation networks, and a diversity of land uses" (Public Resources Code Section 21099(b)(1)). On January 20, 2016, the Office of Land Use and Climate Innovation (LCI), formerly the Office of Planning and Research (OPR), released revisions to its proposed CEQA guidelines for the implementation of SB 743. Final review and rulemaking for the new guidelines were completed on December 28, 2018, when the California Natural Resource Agency certified and adopted the CEQA Guidelines update package, including guidelines section implementing Senate Bill 743.

On June 25, 2020, the City adopted Resolution CC 2020-20, which established vehicle miles traveled (VMT) thresholds for the purpose of analyzing transportation impacts under CEQA. Per the City's Transportation Guidelines, projects generating less than 110 (permanent) daily vehicle trips may be screened out of VMT analysis and would be presumed to have a less than significant impact on VMT.

3. ENVIRONMENTAL CHECKLIST

Proposed Project VMT

Development of the BESS facility on the Project Site would involve construction that would generate temporary construction-related traffic. The proposed Project's construction phase would be consistent with typical construction activities in terms of the temporary nature of activities, trip generation characteristics, and the types of vehicles and equipment required. While worker and vendor trips would generate VMT, once construction is completed, the construction-related traffic would cease and VMT would return to pre-construction conditions. Impacts due to construction activities would be temporary and would not result in any meaningful long-term or permanent change in VMT. It is anticipated that most construction personnel would be from surrounding population centers. Measures to reduce the VMT generated by workers and trucks are limited, and there are no thresholds or significance criteria for temporary, construction-related VMT. The increase in VMT associated with the proposed Projects' construction is expected to be temporary and would therefore not cause a significant VMT impact.

In addition, the operation phase of the proposed Project would include one or two staff members on-site, as needed. In addition to on-site staff, the proposed Project is expected to typically require a four- to six-person crew for maintenance visits, once every two to three months on average. As concluded in the Transportation Study prepared for the proposed Project, the proposed Project generated traffic would be negligible (Appendix R). Therefore, consistent with the City's adopted Transportation Guidelines, the proposed Project screens out of VMT analysis and is presumed to have a less than significant impact on VMT. Impacts would be less than significant, and no mitigation measures are necessary.

c) *Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?*

The proposed Project includes three existing driveways that would provide vehicular employee-only access to the Project Site. The Project Site would also include internal drive aisles. See Figure 4a, *Proposed Site Layout*.

The City and LACoFD have adopted design standards that preclude the construction of any unsafe roadway, circulation, or access design features. Design and construction of the proposed driveways would be required to adhere to the City's Public Works Department's established standard plans, the standards outlined in the Industry Municipal Code, and LACoFD's design standards, which are imposed on development projects during the City's development review and building plan check process.

At intersections and project driveways in Industry, a substantially clear line of sight must be maintained between the driver of a vehicle waiting at the crossroad and the driver of an approaching vehicle. Sight distance is the continuous length of roadway visible to the driver.

3. ENVIRONMENTAL CHECKLIST

Compliance with the City's and LACoFD's established design standards would ensure that hazards due to design features would not occur.

Based on a review of aerial photography and Google maps, there are no restrictions blocking views from the locations along Gale Avenue and Ward Way. Sufficient sight distance is provided because each of the existing driveways was previously approved by the City. Additionally, the Project Site does not include incompatible uses such as farm equipment. The Project Site is located in an industrialized area of the City and would be developed with an industrial-type use that is compatible with the surrounding uses. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

d) Result in inadequate emergency access?

As outlined above, the proposed Project would introduce new on-site vehicular access circulation improvements that would connect to existing driveways located off Gale Avenue and Ward Way. To address emergency and fire access needs, the improvements would be required to be designed and constructed in accordance with all applicable City and LACoFD design standards for emergency access (e.g., minimum lane width and turning radius). For example, the drive aisles would be designed to meet the minimum width requirements of LACoFD to allow the passing of emergency vehicles.

The Project Site is located in an established, developed area with sufficient access for emergency service providers. The internal drive aisle would serve as a fire access lane and would become part of the on-site fire access path of travel. These improvements would not hinder emergency access to the Project Site or the surrounding area.

Additionally, the proposed Project would be required to be designed and constructed in accordance with all applicable City and LACoFD design standards for emergency access (e.g., minimum lane width and turning radius). During the development review and building plan check process, the City would coordinate with LACoFD to ensure that the necessary fire prevention and emergency response features are incorporated into the Project Site and that adequate circulation and access (e.g., adequate turning radii for fire trucks) are provided within the access and circulation components of the Project Site.

The proposed Project would also be required to incorporate all applicable design and safety requirements as set forth in the most current adopted fire codes, building codes, and nationally recognized fire and life safety standards of the City and LACoFD. Compliance with these standards is ensured through the City's and LACoFD's development review and building plan check process.

Therefore, impacts on emergency access would be less than significant and no mitigation measures are necessary.

3. ENVIRONMENTAL CHECKLIST

XVIII. Tribal Cultural Resources

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code § 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
i) Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
ii) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code § 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code § 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

DISCUSSION

a) *Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code § 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of*

3. ENVIRONMENTAL CHECKLIST

the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:

- i) Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or

The Project Site does not contain a known tribal cultural resource that is listed in the California Register of Historical Resource or in a local register of historical resources (NPS 2024; OHP 2025). Public Resources Code Section 5020.1(k) defines local register of historical resources as a list of properties officially designated or recognized as historically significant by a local government pursuant to a local ordinance or resolution. There is also no local ordinance or resolution that identifies the Project Site containing a tribal cultural resource that also constitutes a historical resource. No impact related to tribal cultural resources that are listed or eligible for listing on the CRHR or local register would occur, and no mitigation measures are necessary.

- ii) *A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code § 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code § 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.*

The provisions of CEQA, PRC Sections 21080.3.1 et seq. (also known as AB 52), require meaningful consultation with California Native American tribes on potential impacts to tribal cultural resources. As defined in PRC Section 21074, tribal cultural resources are sites, features, places, cultural landscapes, sacred places, and objects with cultural value to a California Native American tribe.

As part of the AB 52 process, a Native American tribe must submit a written request to the relevant lead agency if it wishes to be notified of projects that require CEQA public noticing and are within its traditionally and culturally affiliated geographical area. The lead agency must provide written, formal notification to the tribes that have requested it within 16 days of determining that a project application is complete or deciding to undertake a project. The tribe must respond to the lead agency within 30 days of receipt of the notification if it wishes to engage in consultation on the proposed Project, and the lead agency must begin the consultation process within 30 days of receiving the request for consultation. Consultation concludes when either 1): the parties agree to mitigation measures to avoid a significant effect, if one exists, on a tribal cultural resource, or 2) a party, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached. AB 52 also addresses confidentiality during tribal consultation per PRC Section 21082.3(c).

3. ENVIRONMENTAL CHECKLIST

In accordance with the provisions of AB 52, on September 18, 2025, the City sent letters to the Gabrieleño Band of Mission Indians–Kizh Nation (Kizh Nation), Gabrielino Tongva Tribe, and Soboba Band of Luiseño Indians. The 30-day noticing requirement under AB 52 ended on October 20, 2025 (approximately 30 days from the date the tribes received the notification letter). Of the three notified tribes, Kizh Nation, responded via email and provided a list of mitigation measures that they requested be included in this Initial Study.

While not anticipated, there is a potential to encounter buried prehistoric deposits (which could qualify as tribal cultural resources) on the Project Site during site excavation and grading activities. The presence of unknown subsurface tribal cultural resources remains possible and could be affected by project-related, ground-disturbing activities associated with excavation and grading. It is possible that subsurface disturbance may uncover undiscovered tribal cultural resources at the Project Site. Therefore, impacts to tribal cultural resources are potentially significant.

To enable Kizh Nation to protect and preserve their tribal cultural resources and to reduce potential impacts to such resources (if encountered during ground-disturbing activities), mitigation is required. With implementation of Mitigation Measures TCR-1, TCR-2, and TCR-3, which are based on input the City received from Kizh Nation during the consultation efforts, impacts to tribal cultural resources would be reduced to a level of less than significant.

Mitigation Measure TCR-1: Retain a Native American Monitor Prior to Commencement of Ground-Disturbing Activities. The Project applicant shall retain a Native American Monitor prior to the commencement of any “ground-disturbing activity” for the subject project at all project locations (i.e., both on-site and any off-site locations that are included in the project description/definition and/or required in connection with the project, such as public improvement work). “Ground-disturbing activity” shall include, but is not limited to, demolition, pavement removal, potholing, auguring, grubbing, tree removal, boring, grading, excavation, drilling, and trenching. A copy of the executed monitoring agreement shall be submitted to the City prior to the commencement of any ground-disturbing activity. The monitor will complete daily monitoring logs that will provide descriptions of the relevant ground-disturbing activities, the type of construction activities performed, locations of ground-disturbing activities, soil types, cultural-related materials, and any other facts, conditions, materials, or discoveries of significance to the Tribe. Monitor logs will identify and describe any discovered tribal cultural resources (TCR), as defined by Section 21074(a) of the Public Resources Code. Copies of monitor logs will be provided to the City upon written request to the Tribe. Upon discovery of any TCRs, all construction activities in the immediate vicinity of the discovery shall cease (i.e., not less than the surrounding 50 feet) and shall not resume until the discovered TCR has been fully assessed by the monitor and/or archeologist. The tribal monitor will recover and retain discovered

3. ENVIRONMENTAL CHECKLIST

TCRs in the form and/or manner they deem appropriate, and for any purpose the Tribe deems appropriate, including for educational, cultural, and/or historic purposes.

Mitigation Measure TCR-2: Unanticipated Discovery of Human Remains and Associated Funerary Objects. Native American human remains are defined in PRC 5097.98(d)(1) as an inhumation or cremation, and in any state of decomposition or skeletal completeness. Funerary objects, called associated grave goods in Public Resources Code Section 5097.98, are also to be treated according to this statute. If Native American human remains and/or grave goods are discovered or recognized on the Project Site, then all construction activities shall immediately cease. Health and Safety Code Section 7050.5 dictates that any discoveries of human remains shall be immediately reported to the County Coroner, and all ground-disturbing activities shall immediately halt and shall remain halted until the coroner has determined the nature of the remains. If the coroner recognizes the human remains to be those of a Native American or has reason to believe they are Native American, he or she shall contact, by telephone within 24 hours, the Native American Heritage Commission, and Public Resources Code Section 5097.98 shall be followed. Human remains and grave/burial goods shall be treated alike per California Public Resources Code section 5097.98(d)(1) and (2). Construction activities may resume in other parts of the Project Site at a minimum of 200 feet away from discovered human remains and/or burial goods, if the tribal monitor determines that resuming construction activities at that distance is acceptable and provides the project manager express consent of that determination (CEQA Guidelines Section 15064.5(f)). Preservation in place (i.e., avoidance) is the preferred manner of treatment for discovered human remains and/or burial goods. Any discovery of Native American human remains/burial goods shall be kept confidential to prevent further disturbance.

Mitigation Measure TCR-3: Procedures for Burials and Funerary Remains. To the Tribe, the term “human remains” encompasses more than human bones. In ancient as well as historic times, Tribal Traditions included, but were not limited to, the preparation of the soil for burial, the burial of funerary objects with the deceased, and the ceremonial burning of human remains. If the discovery of human remains includes four or more burials, the discovery location shall be treated as a cemetery and a separate treatment plan shall be created. The prepared soil and cremation soils are to be treated in the same manner as bone fragments that remain intact. Associated funerary objects are objects that, as part of the death rite or ceremony of a culture, are reasonably believed to have been placed with individual human remains either at the time of death or later; other items made exclusively for burial purposes or to contain human remains can also be considered associated funerary objects. Cremations will either be removed in bulk or by means as necessary to ensure complete recovery of all sacred materials. In the case where discovered human remains cannot be fully documented and recovered on the same day, the remains will be covered with muslin cloth and a steel plate that can be moved by

3. ENVIRONMENTAL CHECKLIST

heavy equipment placed over the excavation opening to protect the remains. If this type of steel plate is not available, a 24-hour guard should be posted outside of working hours. The Tribe will make every effort to recommend diverting the project and keeping the remains in situ and protected. If the Project cannot be diverted, it may be determined that burials will be removed. In the event preservation in place is not possible despite good faith efforts by the Project applicant, before ground-disturbing activities may resume on the Project Site, the landowner shall arrange a designated site location within the footprint of the project for the respectful reburial of the human remains and/or ceremonial objects. Each occurrence of human remains and associated funerary objects will be stored using opaque cloth bags. All human remains, funerary objects, sacred objects, and objects of cultural patrimony will be removed to a secure container on-site if possible. These items should be retained and reburied within six months of recovery. The site of reburial/repatriation shall be on the Project Site but at a location agreed upon between the Tribe and the landowner at a site to be protected in perpetuity. There shall be no publicity regarding any cultural materials recovered. The Tribe will work closely with the Project's qualified archaeologist to ensure that the excavation is treated carefully, ethically, and respectfully. If data recovery is approved by the Tribe, documentation shall be prepared and shall include (at a minimum) detailed descriptive notes and sketches. All data, recovery data, and recovery-related forms of documentation shall be approved in advance by the Tribe. If any data recovery is performed, once complete, a final report shall be submitted to the Tribe and the Native American Heritage Commission. The Tribe does not authorize any scientific study or the utilization of any invasive and/or destructive diagnostics on human remains.

XIX. Utilities and Service Systems

Would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

**MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY**

3. ENVIRONMENTAL CHECKLIST

b) Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
c) Result in a determination by the waste water treatment provider, which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
d) Generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
e) Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

DISCUSSION

a) ***Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?***

Water and Wastewater

During construction activities, there would be a temporary, intermittent demand for water for such activities as soil watering for site preparation, fugitive dust control, concrete preparation, cleanup, and other short-term activities. Normal operation of the proposed BESS facility on the Project Site would result in water use for landscape irrigation and operation of the office building. Outside of the office and storage building and landscaping, water use would be minimal and intermittent, associated with activities such as maintenance, and emergency fire suppression.

Suburban Water Systems (SWS) currently provides water to the Project Site and anticipates that water demands can be met during normal, single dry, and multiple dry years over the next 20 years (City of Industry 2025; SWS 2021). Within the SWS service area, the Project Site is in the San Jose Hills area of the service for SWS. In 2020, SWS had a water demand of 24,939 acre-feet (AF) and a water supply of 25,649 AF for the San Jose Hills area (SWS 2021). Due to the existing Project Site having more intensive water uses than what is proposed, SWS would be able to provide water to the Project Site.

3. ENVIRONMENTAL CHECKLIST

Wastewater generation associated with the operation of the proposed Project includes connections to the office and storage building which would contain six offices and a conference room for employees and for occasional use by contractors and vendors. The office and storage building would include a sink and a restroom. The restroom would be connected to sanitary sewer services. However, when compared to existing conditions on the Project Site which include 161,781 square feet of building space, the 1,200 square foot office building is minimal in nature and the existing sewer facilities would have adequate capacity to accommodate the proposed Project.

Therefore, the proposed Project would not require the relocation or expansion of any water or wastewater treatment facilities. Impacts would be less than significant, and no mitigation measures are necessary.

Stormwater Drainage

As detailed in the proposed Project's Hydrology Study and Stormwater Quality Management Plan (Appendix P), the proposed Project would result in a decrease of 4.54 acres of impervious surfaces at the Project Site when compared to existing conditions. Therefore, the proposed Project would not require the expansion or relocation of stormwater drainage facilities and impacts would be less than significant. No mitigation measures are necessary.

Electricity and Natural Gas

The proposed Project represents an improvement to the existing electrical power system as its function would be to receive, store, and deliver electricity for the SCE regional electric grid. The proposed Project is itself a project that expands the capacity of existing electric facilities and the impacts of its construction and operation are analyzed throughout this Initial Study. Therefore, the proposed Project would have less than significant impacts related to electric power and no mitigation measures are necessary.

The proposed Project would not require new natural gas services connections and would not result in the need for new natural gas supplies or infrastructure. Therefore, the proposed Project would have no impact with regard to natural gas, and no mitigation measures are necessary.

Telecommunications

The proposed Project would include telecommunication facilities to meet the communication requirements for interconnecting and communicating with the SCE/CAISO facilities and to support remote operations monitoring. To provide communication with SCE facilities, a fiber-optic line would be used to connect the proposed Project's collector substation with the SCE substation. Utility interconnection regulations require the installation of a second, separate and redundant, diverse telecom option. These telecommunications facilities are considered part of the proposed Project and the environmental impacts of constructing and operating these facilities

3. ENVIRONMENTAL CHECKLIST

are analyzed throughout this Initial Study. The proposed Project would not require new or expanded telecommunications facilities beyond those identified in Section 2.3.6, *Project Description*, of this Initial Study. Therefore, impacts related to telecommunications facilities would be less than significant and no mitigation measures are necessary.

b) Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?

As discussed in Section XIX.a, the proposed Project would use minimal water to support the construction of the BESS facility and would decrease the demand for water during the operational phase when compared to existing conditions. SWS currently provides water to the Project Site and anticipates that water demands can be met during normal, single dry, and multiple dry years over the next 20 years (SWS 2021). Therefore, no impact would occur, and no mitigation measures are necessary.

c) Result in a determination by the waste water treatment provider, which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

As noted above, the proposed Project would generate less wastewater compared to existing conditions. Due to the wastewater provider already treating wastewater from the Project Site at a larger volume than what is proposed, the proposed Project would not require construction of new or expanded wastewater treatment facilities. Therefore, no impact would occur, and no mitigation measures are necessary.

d) Generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?

Valley Vista Services provides solid waste services in Industry. In 2019, approximately 89 percent of the municipal solid waste landfilled from the City was disposed of at the Antelope Valley Public Landfill, Azusa Land Reclamation Co. Landfill, and Badlands Sanitary Landfill (CalRecycle 2019). Very small amounts of solid waste would be generated from the proposed Project when compared to existing conditions at the Project Site.

Construction of the proposed Project would result in the demolition of the existing on-site buildings, covered storage area, and hardscape. These activities would result in the generation of construction and demolition debris such as metal scrap, lumber, concrete, and asphalt, which would be collected and diverted to a construction and demolition debris facility for materials to be recycled and/or discarded. However, in compliance with CALGreen, development of the proposed Project's improvements would be required to divert a minimum of 65 percent of construction and demolition waste from landfills. Residual waste, such as trash packing materials, and plastics could require disposal at a landfill.

3. ENVIRONMENTAL CHECKLIST

The proposed BESS facility would be designed to be in operation for 35 years. After completion of the BESS facility operations, if not repowered with then-current technology, most of the electrical equipment (breakers, transformers, inverters) would be removed and recycled or disposed of. Project batteries shipped off-site to be recycled or disposed of at an appropriately licensed disposal facility. A collection and recycling program would be implemented to promote recycling of the proposed Project components and minimize disposal in landfills.

All collection, transportation, and disposal of any solid waste generated by the proposed Project during construction and operation would comply with all applicable federal, state, and local statutes and regulations. In particular, AB 939 requires that at least 50 percent of solid waste generated by a jurisdiction be diverted from landfill disposal through source reduction, recycling, or composting. Cities, counties, and regional agencies are required to develop a waste management plan that would achieve a 50 percent diversion from landfills (Public Resources Code Section 40000 *et seq.*). Furthermore, as required by existing regulations, any hazardous materials collected on the Project Site during demolition, construction, or operational activities would be transported and disposed of by a permitted and licensed hazardous materials service provider at a facility permitted to accept such hazardous materials.

As such, the proposed Project's improvements are not anticipated to generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

e) *Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?*

The following federal and state laws and regulations govern solid waste disposal:

- **AB 939 (Chapter 1095, Statutes of 1989)**, the California Integrated Waste Management Act of 1989 required each city, county, and regional agency to develop a source reduction and recycling element of an integrated waste management plan that contained specified components, including a source reduction component, a recycling component, and a composting component. With certain exceptions, the source reduction and recycling components were required to divert 50 percent of all solid waste from landfill disposal or transformation by January 1, 2000, through source reduction, recycling, and composting activities.
- **AB 32 (Chapter 488, Statutes of 2006)**, the California Global Warming Solutions Act established mandatory recycling as one of the measures to reduce GHG emissions adopted in the Scoping Plan by CARB.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

3. ENVIRONMENTAL CHECKLIST

- **AB 341 (Chapter 476, Statutes of 2011)**, requires that all “commercial” generators of solid waste (businesses, institutions, and multifamily dwellings) establish recycling and/or composting programs. AB 341 goes beyond AB 939 and establishes the new recycling goal of 75 percent by 2020.

Project-related construction and operation phases would be implemented in accordance with all applicable federal, state, and local laws and regulations that govern solid waste disposal. Therefore, impacts would be less than significant, and no mitigation measures are necessary.

XX. Wildfire

If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project:

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Substantially impair an adopted emergency response plan or emergency evacuation plan?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
b) Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
c) Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
d) Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

Wildland fire protection in California is the responsibility of either the state, local government, or the federal government. State Responsibility Areas (SRA) are the areas where the State of

3. ENVIRONMENTAL CHECKLIST

California has the primary financial responsibility for the prevention and suppression of wildland fires. The SRA forms one large area over 31 million acres, for which the California Department of Forestry and Fire Protection (CAL FIRE) provides a basic level of wildland fire prevention and protection services.

Local Responsibility Areas (LRA) include incorporated cities, cultivated agriculture lands, and portions of the desert. LRA fire protection is typically provided by city fire departments, fire protection districts, counties, and by CAL FIRE under contract to local government. CAL FIRE uses an extension of the SRA Fire Hazard Severity Zone model as the basis for evaluating fire hazard in LRA. The LRA hazard rating reflects flame and ember intrusion from adjacent wildlands and from flammable vegetation in the urban area. The Los Angeles County Fire Department currently provides fire protection and emergency medical services to Industry.

Fire Hazard Severity Zones (FHSZ) are identified by Moderate, High and Very High in an SRA, and Very High in an LRA.

If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project:

DISCUSSION

a) Substantially impair an adopted emergency response plan or emergency evacuation plan?

The proposed Project is located in a developed, urbanized area of the City of Industry and is not within a state responsibility area (SRA) or a very high fire hazard severity zone, as mapped by CAL FIRE (CAL FIRE 2025). Potential impacts related to fire hazards are addressed in Section 3.IX, *Hazards and Hazardous Materials*. The nearest FHSZ in an SRA and LRA is a Very High FHSZ two miles southwest of the Project Site, where open space interfaces with the urban edge west of Vallecito Drive. Land between the edge of the FHSZ and the Project Site is dense urban development and includes SR-60.

The emergency response plan in effect in Los Angeles County is the Los Angeles County OAEOP maintained by the County Office of Emergency Management (OAEOP 2023) Project construction and operation would not block access to the Project Site or to surrounding properties, and would not impede the evacuation program. Notification of emergency personnel of impending blockages, detour signs, and a construction plan for traffic would ensure that there would be no impact in the case of emergency evacuation.

Therefore, the proposed Project would not impair implementation of or physically interfere with an adopted emergency response or evacuation plan. No impact would occur, and no mitigation measures are necessary.

3. ENVIRONMENTAL CHECKLIST

b) Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?

Based on the review of the topographic map, the Project Site is flat and developed and does not contain vegetated hillsides or other wildfire-prone terrain. The proposed Project is not located within or near a very high fire hazard severity zone, and the surrounding area consists of industrial, commercial, and residential uses. Although prevailing wind patterns flow in the direction of the Project Site, due to intervening development and the level topography north of the very high FHSZ, Project development is not anticipated to exacerbate wildfire risk. The proposed Project would not include residential uses or structures regularly occupied by large groups of people. Therefore, the proposed Project would not exacerbate wildfire risk or expose occupants to pollutant concentrations from a wildfire. No impact would occur, and no mitigation measures are necessary.

c) Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?

The proposed Project involves redevelopment of an existing industrial site with a battery energy storage facility and supporting infrastructure. No new off-site utilities, overhead electrical lines, roads, or fuel breaks are proposed. Electrical connections would be made to the adjacent Southern California Edison substation. The proposed Project does not include infrastructure that would exacerbate fire risk or require activities that would impact sensitive environmental resources. No impact would occur, and no mitigation measures are necessary.

d) Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?

As noted above, the Project Site and off-site improvement areas are not located in a state responsibility area or land classified as a very high fire hazard severity zone, as identified in the latest Los Angeles County Fire Hazard Severity Zone Map (CAL FIRE 2025). The proposed Project would not expose people or structures to risks related to post-fire slope instability or landslides, as the Project Site is generally flat and is not located in or near hillside areas. The proposed Project would also not result in downstream flooding or adverse drainage changes. Stormwater under existing conditions flows to a public storm drain in Gale Avenue that connects to a system in South Stimson Avenue and ultimately discharges to the San Jose Creek channel. The proposed Project would retain this existing flow path and include surface grading, drop inlets, and underground piping to maintain drainage patterns. Peak runoff volumes would be reduced compared to existing conditions because the amount of impermeable surface area would decrease (from 92 percent to 88 percent). However, biofiltration systems would be incorporated to remove pollutants prior to discharge. Therefore, the proposed Project would not result in significant risks

3. ENVIRONMENTAL CHECKLIST

associated with runoff, drainage changes, or post-fire instability. No impact would occur, and no mitigation measures are necessary.

XXI. Mandatory Findings of Significance

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

DISCUSSION

a) *Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or*

3. ENVIRONMENTAL CHECKLIST

endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

As shown in Figure 3, *Aerial Photograph*, the Project Site is heavily disturbed and is in a highly urbanized area of the City; it is mainly surrounded by industrial and warehouse uses.

As substantiated in Section IV, *Biological Resources*, implementation of the proposed Project would not result in the reduction of the habitat of fish or wildlife species; cause a fish or wildlife population to drop below self-sustaining levels; threaten to eliminate a plant or animal community; or reduce the number or restrict the range of a rare or endangered plant or animal.

As substantiated in Section V, *Cultural Resources*, no historic resources were identified on the Project Site. However, Project related ground-disturbing activities (e.g., grading and excavation) have the potential to reveal unknown buried deposits. With implementation of Mitigation Measures CUL-1 and CUL-2, impacts to archaeological resources would be reduced to a less than significant level.

Furthermore, Project related ground-disturbing activities (e.g., grading and excavation) have the potential to reveal unknown buried paleontological resources. However, as substantiated in Section VII, *Geology and Soils*, impacts to paleontological resources were deemed to be less than significant with implementation of Mitigation Measure GEO-1.

Finally, as stated in Section XVIII, *Tribal Cultural Resources*, the presence of unknown subsurface tribal cultural resources on the site remains possible and could be affected by Project-related, ground-disturbing activities associated with excavation and grading at the Project Site. Therefore, the Kizh Nation provided the City with mitigation measures (TCR-1, TCR-2, and TCR-3) to reduce the potential impact to tribal cultural resources to a less than significant level.

b) Does the project have impacts that are individually limited, but cumulatively considerable? (“Cumulatively considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)

The issues relevant to the proposed Project development are confined to the immediate Project Site and surrounding area. Additionally, the Project Site is in a highly urbanized, disturbed area of the City where supporting utility infrastructure (e.g., electricity, natural gas, and drainage) and services (e.g., solid waste collection) currently exist. Project implementation would not require the construction of new or expansion of utility infrastructure for water, sewer, or natural gas. Improvements to the SCE Walnut Substation would be required but they would only be needed to accommodate and support the proposed BESS facility's interconnection.

Furthermore, impacts related to other topical areas such as air quality, GHG, hydrology and water quality, and traffic would not be cumulatively considerable with development of the proposed

3. ENVIRONMENTAL CHECKLIST

Project in conjunction with other cumulative projects (including the proposed development of another similar, but smaller BESS facility approximately 0.2 mile west of the Project Site), as analyzed in this Initial Study.

In consideration of the preceding factors, the proposed Project's contribution to cumulative impacts would be rendered less than significant; therefore, project impacts would not be cumulatively considerable.

c) *Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?*

As substantiated in the respective topical sections of this Initial Study, implementation of the proposed Project would not result in significant impacts in the areas of air quality, GHG, geology and soils, hazards and hazardous materials, hydrology and water quality, or wildfire, which may cause adverse effects on human beings. Additionally, as outlined in Section XIII, Noise, construction-related noise impacts would be reduced to a level of less than significant with implementation of mitigation. Therefore, impacts related to these environmental effects were deemed to be less than significant with mitigation incorporated.

4. REFERENCES

Bay Area Air District. 2023, May. California Environmental Quality Act Air Quality Guidelines. <https://www.baaqmd.gov/plans-and-climate/california-environmental-quality-act-ceqa/updated-ceqa-guidelines>.

California Air Resources Board (CARB). 2022. 2022 Scoping Plan for Achieving Carbon Neutrality. <https://ww2.arb.ca.gov/sites/default/files/2022-12/2022-sp.pdf>.

California Department of Conservation (DOC). 2022. California Important Farmland Finder. <https://maps.conservation.ca.gov/DLRP/CIFF/>.

———. 2016. Division of Mine Reclamation. <https://maps.conservation.ca.gov/mol/>.

California Department of Forestry and Fire Protection (CAL FIRE). 2023. Fire Hazard Severity Zones. <https://osfm.fire.ca.gov/what-we-do/community-wildfire-preparedness-and-mitigation/fire-hazard-severity-zones>.

California Department of Resources Recycling and Recovery (CalRecycle). 2019a. Jurisdiction Disposal and Alternative Daily Cover (ADC) Tons by Facility. <https://www2.calrecycle.ca.gov/LGCentral/DisposalReporting/Destination/DisposalByFacility>.

California Department of Transportation (Caltrans). 2020, April. Construction Vibration Guidance Manual. <https://dot.ca.gov/-/media/dot-media/programs/environmental-analysis/documents/env/tcvgm-apr2020-a11y.pdf>.

California Geologic Energy Management Division (CalGEM). 2022. Well Finder. <https://maps.conservation.ca.gov/doggr/wellfinder/>.

California Geological Survey (CGS). 2010. Mineral Land Classifications. https://maps.conservation.ca.gov/cgs/minerals/?page=Mineral-Land-Classification#data_s=id%3AdataSource_335-18a47b5b8e5-layer-10-192c08351d6-layer-28%3A35.

California Office of Historic Preservation (OHP). 2025. California Historical Resources. <https://ohp.parks.ca.gov/listedresources/>.

California State Water Resources Control Board (CSWRBC). September 2022. National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges Associated With Construction And Land Disturbance Activities. ORDER WQ 2022-0057-DWQ NPDES NO. CAS000002.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

4. REFERENCES

California Stormwater Quality Association (CASQA). 2019, December. Stormwater Pollution Prevention Plan Template for Traditional Construction Sites.

City of Industry. 2014. 2014 General Plan.

<https://www.cityofindustry.org/DocumentCenter/View/180/General-Plan-PDF>.

_____. February 2025. Water Purveyor Service Area. <https://gis-industry.hub.arcgis.com/maps/5fccb0ac81a24f8f9e671f9418e31064/explore?location=33.967458%2C-117.963120%2C11.73>.

County of Los Angeles Department of Public Works (LADPW). February 2014. Low Impact Development Standards Manual. [https://pw.lacounty.gov/lid/lddservices/docs/Los%20Angeles%20County%20Low%20Impact%20Development%20\(LID\)%20Manual.pdf](https://pw.lacounty.gov/lid/lddservices/docs/Los%20Angeles%20County%20Low%20Impact%20Development%20(LID)%20Manual.pdf).

_____. 2025 (accessed). Spreading Grounds Facilities. <https://pw.lacounty.gov/core-service-areas/uploads/2024/10/SpreadingGroundMap.pdf>.

Department of Water Resources (DWR). 2025 (accessed). SGMA Basin Prioritization Dashboard. <https://gis.water.ca.gov/app/bp-dashboard/final/#>.

Division of Mine Reclamation (DMR). 2022. Mines Online. California Department of Conservation. <http://maps.conservation.ca.gov/mol/>.

Federal Emergency Management Agency (FEMA). 2008. National Flood Hazard Layer FIRMette 06037C1700F. https://msc.fema.gov/arcgis/rest/directories/arcgisjobs/nfhl_print/mscprintb_gpserver/j7eea1edc02a6490a929d3a4ef34c0143/scratch/FIRMETTE_99cf55a-0087-4bb3-a511-bbd521ff7423.pdf <https://msc.fema.gov/portal/home>.

Federal Highway Administration (FHWA). 2006. Roadway Construction Noise Model (RCNM) Version 1.0. Accessed September 2025.
www.fhwa.dot.gov/environment/noise/construction_noise/rncm2/.

La Puente Valley County Water District (LPVCWD). May 2017. 2017 Water Master Plan Update. <https://lapuentewater.com/wp-content/uploads/2022/02/2017-05-15-FINAL-2017-LPVCWD-WMP.pdf>.

Los Angeles, County of. 2014, June. Los Angeles County General Plan Update Draft Environmental Impact Report (SCH No. 2011081042). https://planning.lacounty.gov/wp-content/uploads/2022/11/gp_2035_deir.pdf.

_____. 2007. San Gabriel Watershed.
http://www.ladpw.org/wmd/watershed/SG/docs/SanGabrielRiver_wtrshed.pdf.

4. REFERENCES

National Fire Protection Association (NFPA). 2022. Energy Storage Systems (ESS) and Solar Safety. <https://www.nfpa.org/News-and-Research/Resources/Emergency-Responders/High-risk-hazards/Energy-Storage-Systems>.

National Park Service (NPS). 2024. National Register of Historic Places. <https://www.nps.gov/subjects/nationalregister/database-research.htm>.

Office of Environmental Health Hazard Assessment (OEHHA). 2015, February. Air Toxics Hot Spots Program Risk Assessment Guidelines. Guidance Manual for Preparation of Health Risk Assessments. http://oehha.ca.gov/air/hot_spots/2015/2015GuidanceManual.pdf.

South Coast Air Quality Management District (South Coast AQMD). 1993. California Environmental Quality Act Air Quality Handbook.

———. 2010, September 28. Minutes for the GHG CEQA Significance Threshold Stakeholder Working Group #15. [http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-\(ghg\)-ceqa-significance-thresholds/year-2008-2009/ghg-meeting-15/ghg-meeting-15-minutes.pdf](http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/year-2008-2009/ghg-meeting-15/ghg-meeting-15-minutes.pdf).

Southern California Association of Governments (SCAG). 2024. Connect SoCal Plan: The 2024–2050 Regional Transportation Plan / Sustainable Communities Strategy of the Southern California Association of Governments. <https://scag.ca.gov/connect-socal>.

State Water Resources Control Board (SWRCB). 2024. San Gabriel River Watershed. https://www.waterboards.ca.gov/rwqcb4/water_issues/programs/regional_program/Water_Quality_and_Watersheds/san_gabriel_river_watershed/summary.shtml#:~:text=Watershed%20Description,habitats%20in%20its%20upper%20reaches.

Suburban Water Systems (SWS). 2021, June. 2020 Urban Water Management Plan. https://wuedata.water.ca.gov/getfile?filename=/public%2Fuwmp_attachments%2F3851880729%2FSuburban%20Final%202020%20UWMP_2021-06-30.pdf.

TRC. 2024, June. Cultural Records Search Results Memorandum.

US Environmental Protection Agency (EPA). May 2021. San Gabriel Valley Superfund Sites Progress Update. <https://semspub.epa.gov/work/09/100023871.pdf>.

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

4. REFERENCES

This page is intentionally left blank.

5. LIST OF PREPARERS

LEAD AGENCY

Kathy Tai, Development Services Manager

Eduardo Manriquez, Contract Associate Planner

Mike Poland, Contract Senior Project Manager

PLACEWORKS

Addie Farrell, Principal (Principal-in-Charge)

Jorge Estrada, Senior Associate (Project Manager)

Lance Park, Senior Associate, Air Quality and GHG

Steve Bush, Senior Engineer, Health Risk Assessment and Air Toxics

Chris Shields, Senior Associate, Noise and Vibration

Dina El Chammas, Senior Engineer, Hydrology and Water Quality

Emily Park, Associate, Air Quality and GHG

Jared Bradford, Associate

Justine Garner, Associate

Madeline Miller, Associate

Cary Nakama, Graphic Artist

MARICI BATTERY ENERGY STORAGE SYSTEM FACILITY INITIAL STUDY / MITIGATED
NEGATIVE DECLARATION
CITY OF INDUSTRY

5. LIST OF PREPARERS

This page is intentionally left blank.